首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63111篇
  免费   605篇
  国内免费   1361篇
电工技术   806篇
综合类   399篇
化学工业   6273篇
金属工艺   1977篇
机械仪表   3198篇
建筑科学   3569篇
矿业工程   1638篇
能源动力   344篇
轻工业   13399篇
水利工程   1480篇
石油天然气   1379篇
武器工业   208篇
无线电   4243篇
一般工业技术   20873篇
冶金工业   1113篇
原子能技术   617篇
自动化技术   3561篇
  2023年   98篇
  2022年   122篇
  2021年   167篇
  2020年   137篇
  2019年   112篇
  2018年   141篇
  2017年   76篇
  2016年   122篇
  2015年   164篇
  2014年   319篇
  2013年   332篇
  2012年   6223篇
  2011年   7971篇
  2010年   1644篇
  2009年   811篇
  2008年   5253篇
  2007年   5106篇
  2006年   4366篇
  2005年   3938篇
  2004年   3268篇
  2003年   2812篇
  2002年   2580篇
  2001年   2097篇
  2000年   2221篇
  1999年   1431篇
  1998年   1015篇
  1997年   909篇
  1996年   791篇
  1995年   753篇
  1994年   720篇
  1993年   566篇
  1992年   683篇
  1991年   651篇
  1990年   695篇
  1989年   714篇
  1988年   487篇
  1987年   579篇
  1986年   527篇
  1985年   676篇
  1984年   617篇
  1983年   537篇
  1982年   509篇
  1981年   449篇
  1980年   323篇
  1979年   270篇
  1978年   188篇
  1976年   89篇
  1975年   85篇
  1973年   75篇
  1965年   92篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ~8 to ~120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.  相似文献   
992.
In this paper, a new compact low energy electron beam ion trap, SH-PermEBIT, is reported. This electron beam ion trap (EBIT) can operate in the electron energy range of 60-5000 eV, with a current density of up to 100 A/cm(2). The low energy limit of this machine sets the record among the reported works so far. The magnetic field in the central drift tube region of this EBIT is around 0.5 T, produced by permanent magnets and soft iron. The design of this EBIT allows adjustment of the electron gun's axial position in the fringe field of the central magnetic field. This turned out to be very important for optimizing the magnetic field in the region of the electron gun and particularly important for low electron beam energy operation, since the magnetic field strength is not tunable with permanent magnets. In this work, transmission of the electron beam as well as the upper limit of the electron beam width under several conditions are measured. Spectral results from test operation of this EBIT at the electron energies of 60, 315, 2800, and 4100 eV are also reported.  相似文献   
993.
Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample melting based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.  相似文献   
994.
The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.  相似文献   
995.
A revolving drop surface tensiometer, which measures the surface tension of a small amount of liquid, is proposed. A remarkable feature of this device is that while using the pendant drop method, it employs a centrifugal force to deform the liquid droplet. The centrifugal force induces a large distortion of the droplet, which enables an accurate measurement of the surface tension to be made. In our experimental setup, the centrifugal force can be increased so that the apparent acceleration becomes up to 100 times larger than that due to gravity, and the capability of this method to measure surface tensions was demonstrated with ethylene glycol.  相似文献   
996.
Capillary forces provide a ubiquitous means of organizing micro- and nanoscale structures on substrates. In order to investigate the mechanism of capillary self-assembly and to fabricate complex ordered structures, precise control of the meniscus shape is needed. We present a precision instrument that enables deposition of liquid droplets spanning from 2 nl to 300 μl, in concert with mechanical manipulation of the liquid-substrate interface with four degrees of freedom. The substrate has sub-100 nm positioning resolution in three axes of translation, and its temperature is controlled using thermoelectric modules. The capillary tip can rotate about the vertical axis while simultaneously dispensing liquid onto the substrate. Liquid is displaced using a custom bidirectional diaphragm pump, in which an elastic membrane is hydraulically actuated by a stainless steel syringe. The syringe is driven by a piezoelectric actuator, enabling nanoliter volume and rate control. A quantitative model of the liquid dispenser is verified experimentally, and suggests that compressibility in the hydraulic line deamplifies the syringe stroke, enabling sub-nanoliter resolution control of liquid displacement at the capillary tip. We use this system to contact-print water and oil droplets by mechanical manipulation of a liquid bridge between the capillary and the substrate. Finally, we study the effect of droplet volume and substrate temperature on the evaporative self-assembly of monodisperse polymer microspheres from sessile droplets, and demonstrate the formation of 3D chiral assemblies of micro-rods by rotation of the capillary tip during evaporative assembly.  相似文献   
997.
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (~21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.  相似文献   
998.
We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of ΔE(X) ? 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E(H) = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.  相似文献   
999.
Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.  相似文献   
1000.
Thermal conductivity of one-dimensional nanostructures, such as nanowires, nanotubes, and polymer chains, is of significant interest for understanding nanoscale thermal transport phenomena as well as for practical applications in nanoelectronics, energy conversion, and thermal management. Various techniques have been developed during the past decade for measuring this fundamental quantity at the individual nanostructure level. However, the sensitivity of these techniques is generally limited to 1 × 10(-9) W∕K, which is inadequate for small diameter nanostructures that potentially possess thermal conductance ranging between 10(-11) and 10(-10) W∕K. In this paper, we demonstrate an experimental technique which is capable of measuring thermal conductance of ~10(-11) W∕K. The improved sensitivity is achieved by using an on-chip Wheatstone bridge circuit that overcomes several instrumentation issues. It provides a more effective method of characterizing the thermal properties of smaller and less conductive one-dimensional nanostructures. The best sensitivity experimentally achieved experienced a noise equivalent temperature below 0.5 mK and a minimum conductance measurement of 1 × 10(-11) W∕K. Measuring the temperature fluctuation of both the four-point and bridge measurements over a 4 h time period shows a reduction in measured temperature fluctuation from 100 mK to 0.6 mK. Measurement of a 15 nm Ge nanowire and background conductance signal with no wire present demonstrates the increased sensitivity of the bridge method over the traditional four-point I-V measurement. This ultra-sensitive measurement platform allows for thermal measurements of materials at new size scales and will improve our understanding of thermal transport in nanoscale structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号