首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5768篇
  免费   251篇
  国内免费   21篇
电工技术   53篇
综合类   23篇
化学工业   1128篇
金属工艺   90篇
机械仪表   125篇
建筑科学   299篇
矿业工程   10篇
能源动力   226篇
轻工业   356篇
水利工程   56篇
石油天然气   31篇
无线电   513篇
一般工业技术   1162篇
冶金工业   833篇
原子能技术   46篇
自动化技术   1089篇
  2023年   56篇
  2022年   115篇
  2021年   183篇
  2020年   130篇
  2019年   174篇
  2018年   211篇
  2017年   137篇
  2016年   163篇
  2015年   133篇
  2014年   194篇
  2013年   351篇
  2012年   309篇
  2011年   346篇
  2010年   254篇
  2009年   261篇
  2008年   271篇
  2007年   275篇
  2006年   200篇
  2005年   193篇
  2004年   167篇
  2003年   170篇
  2002年   144篇
  2001年   85篇
  2000年   96篇
  1999年   71篇
  1998年   232篇
  1997年   156篇
  1996年   98篇
  1995年   107篇
  1994年   78篇
  1993年   70篇
  1992年   58篇
  1991年   45篇
  1990年   31篇
  1989年   31篇
  1988年   37篇
  1987年   34篇
  1986年   19篇
  1985年   28篇
  1984年   20篇
  1983年   15篇
  1982年   25篇
  1981年   29篇
  1980年   22篇
  1979年   21篇
  1978年   17篇
  1977年   26篇
  1976年   45篇
  1975年   13篇
  1972年   13篇
排序方式: 共有6040条查询结果,搜索用时 15 毫秒
61.
Improvement of the interface contact between biological objects and electronic devices can significantly enhance the quality of electronic signal transfer. The surface of biosensor can be artificially modified in order to strengthen the adhesion of biological cells. We report on results of fabrication of micron and submicron golden spines by means of e-beam lithography and electroplating. The fabrication technique allows easy modification of the size and shape of golden spines by variation of processing parameters. The structures with different spine profiles and spacing have been fabricated for optimization of cell growth conditions. We present the results of growth of rat cortical neurons on the surface of spine modified samples. Well-defined cell guidance was established at the spine arrays. Furthermore, the results of transmission electron microscope and focused ion beam technique confirm the good adhesion between the spines and cell structures.  相似文献   
62.
This short communication highlights our latest results towards high‐efficiency microcrystalline silicon single‐junction solar cells. By combining adequate cell design with high‐quality material, a new world record efficiency was achieved for single‐junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
63.
High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].  相似文献   
64.
Differential unitary space-time modulation (DUSTM) and its earlier nondifferential counterpart, USTM, permit high-throughput multiple-input multiple-output (MIMO) communication entirely without the possession of channel state information by either the transmitter or the receiver. For an isotropically random unitary input we obtain the exact closed-form expression for the probability density of the DUSTM received signal, permitting the straightforward Monte Carlo evaluation of its mutual information. We compare the performance of DUSTM and USTM through both numerical computations of mutual information and through the analysis of low- and high-signal-to-noise ratio (SNR) asymptotic expressions. In our comparisons the symbol durations of the equivalent unitary space-time signals are equal to T. For DUSTM the number of transmit antennas is constrained by the scheme to be M=T/2, while USTM has no such constraint. If DUSTM and USTM utilize the same number of transmit antennas at high SNRs the normalized mutual information of the two schemes expressed in bits/s/Hz are asymptotically equal, with the differential scheme performing somewhat better. At low SNRs the normalized mutual information of DUSTM is asymptotically twice the normalized mutual information of USTM. If, instead, USTM utilizes the optimum number of transmit antennas then USTM can outperform DUSTM at sufficiently low SNRs  相似文献   
65.
Sensor coverage varies with location due to factors such as weather, terrain, and obstacles. If a field can be partitioned into zones of homogeneous sensing areas, then the area covered by a random deployment of sensors can be optimized by controlling the number of sensors deployed in each zone. This paper provides formulas to directly calculate the optimal sensor partition in runtime asymptotically equal to the number of zones; to determine the minimum sensor count required to achieve a specific coverage threshold; and to bound the maximum increase in coverage over a strategy oblivious to differences in sensing areas. Results show that this bound is no greater than 13% for a field with two zones. While the analytical solutions assume that each zone is covered independently, sensors are allowed to affect neighboring zones in simulations. Nevertheless, the simulation results support the optimality of the solutions.  相似文献   
66.
Recently, a new multifunctional, bio‐inorganic nanocomposite membrane with the ability to self‐regulate the release of insulin in response to blood glucose (BG) levels was reported. Herein, the application of this material as part of a small, implantable, closed‐loop insulin delivery device designed to continuously monitor BG concentrations and regulate insulin release is proposed. The insulin delivery device consists of a nanocomposite glucose‐responsive plug covalently bound to an insulin reservoir made of surface‐modified silicone. The plug is prepared with crosslinked bovine serum albumin (BSA) and enzymes (glucose oxidase (GOx) and catalase (CAT)), pH‐responsive hydrogel nanoparticles, and multifunctional MnO2 nanoparticles. The plug functions both as a glucose sensor and controlled delivery unit to release higher rates of insulin from the reservoir in response to hyperglycemic BG levels and basal insulin rates at normal BG concentration. The surfaces of the device are modified by silanization followed by PEGylation to ensure its safety and biocompatibility and the stability of encased insulin. Our results show that insulin release can be modulated in vitro in response to glucose concentrations. In vivo experiments show that the glycemia of diabetic rats can be controlled with implantation of the prototype device. The glucose‐responsiveness of the device is also demonstrated by rapid drop in BG level after challenging diabetic rats with bolus injection of glucose solution. In addition, it is demonstrated that surface PEGylation of the device is necessary for reducing the immune response of the host to the implanted foreign object and maintaining insulin stability and bioactivity. With this molecular architecture and the bio‐inorganic nanocomposite plug, the device has the ability to maintain normal BG levels in diabetic rats.  相似文献   
67.
We report on the use of nanoindentation to characterize in situ the voltage and current generation of piezoelectric thin films. This work presents the controlled observation of nanoscale piezoelectric voltage and current generation, allowing accurate quantification and mapping of force function variations. We characterize both continuous thin films and lithographically patterned nano­islands with constrained interaction area. The influence of size on energy generation parameters is reported, demonstrating that nanoislands can exhibit more effective current generation than continuous films. This quantitative finding suggests that further research into the impact of nanoscale patterning of piezoelectric thin films may yield an improved materials platform for integrated microscale energy scavenging systems.  相似文献   
68.
This paper presents a multimethod investigation of framing in the government–media–public interaction during the so-called partial-birth abortion (PBA) debate in the U.S. Operationalizing framing as the use of the word "baby" or "fetus," content analysis first shows that opposing political elites employed almost exclusive vocabularies in attempts to justify their views and shape attitudes. Time-series analysis then charts the path of "baby's" discursive dominance from congressional discourse through news and editorials to citizens. Finally, experimental results support 2 microlevel hypotheses. First, uptake—exposure to articles featuring the exclusive use of "baby" or "fetus," respectively, increased or decreased support for banning PBA. Second, emergence—participants exposed to discourse using both terms converged upon a response independent of the words' relative proportions. In contrast to probabilistic survey response models, these findings support the idea that a kind of public reason can emerge from the interaction of citizens' judgment processes and elite communication.  相似文献   
69.
Organic solar cells are a promising route towards large‐area and low‐price photovoltaic systems. The devices are composed of at least two layers: the hole‐transport layer and the electron‐transport layer. The light absorption can occur in one or both layers. At the interface of the layers the excitons are separated into charge carriers, and every layer deals with one type of carrier. Higher efficiencies of the separation process can be obtained by using a mixed layer containing both materials to obtain a very high interface area. Although the structure of the mixed layers used plays a crucial role for the device performance, until now the morphologies have not been elucidated. In order to correlate physical and optical findings with structure and morphology for the materials in question, electron microscopy experiments were performed on the single components as well as on the layer systems. The conventional electron microscope is a poor phase microscope. As consequence, weak‐phase objects like organic molecules have to be stained or imaged under strong defocus to produce an observable contrast. Artifacts caused by chemical staining and the appearance of Fresnel diffraction using the defocus technique represent the main problems of conventional microscopy. These artifacts can be avoided using electron holography. Holograms of ultrathin sections of thin layers composed of organic dye molecules were recorded. Subsequently, the phase images were reconstructed. In this manner, we succeeded in obtaining high‐contrast electron micrographs without applying staining or defocus. In addition, holograms of crystalline C60 and zinc phthalocyanine were successfully recorded. Holography has been shown to be a useful tool to image beam‐sensitive and weak‐phase objects without artifacts.  相似文献   
70.
应用MOCVD方法我们在c轴取向的蓝宝石衬底上生长出Fe掺杂和Mn掺杂GaN薄膜。通过改变前驱物的通入量,我们制备出不同掺杂浓度的样品。应用高分辨透射电镜,我们对样品的微结构进行了分析。对于Fe过掺杂GaN样品,我们发现了六角结构的Fe3N团簇的存在,并且Fe3N(0002)面平行于GaN(0002)面;对于Mn过掺杂GaN样品,我们发现了六角结构的Mn6N2.58相的存在,并且Mn6N2.58(0002)面平行于GaN(0002)面。同时,由于晶格中掺入了大量掺杂离子,GaN晶格取向遭到了破坏,导致了部分GaN(0002)面的倾斜。磁学测量表明均一相的Fe掺杂GaN显现铁磁性,而均一相Mn掺杂GaN没有铁磁性。由于铁磁性Fe单晶和Fe3N团簇的存在,相比于均一性Fe掺杂GaN,过掺杂GaN样品的磁性大幅度增强,而Mn过掺杂GaN样品显现出很弱的铁磁性,这有可能来源于Mn6N2.58相。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号