Lipids play an essential role in platelet functions. It is known that polyunsaturated fatty acids play a role in increasing platelet reactivity and that the prothrombotic phenotype plays a crucial role in the occurrence of major adverse cardiovascular events. The ongoing increase in cardiovascular diseases’ incidence emphasizes the importance of research linking lipids and platelet function. In particular, the rebound phenomenon that accompanies discontinuation of clopidogrel in patients receiving dual antiplatelet therapy has been associated with changes in the lipid profile. Our many years of research underline the importance of reduced HDL values for the risk of such a rebound effect and the occurrence of thromboembolic events. Lipids are otherwise a heterogeneous group of molecules, and their signaling molecules are not deposited but formed “on-demand” in the cell. On the other hand, exosomes transmit lipid signals between cells, and the profile of such changes can be monitored by lipidomics. Changes in the lipid profile are organ-specific and may indicate new drug action targets. 相似文献
Abstract Floods, droughts, water scarcity, and water contamination are some among many water problems that are present today and will be even more noticeable in the future. In the past, many different tools have been used for simulation and optimization of complex water resources systems in order to provide an improved basis for decision making. The continuing evolution of information technology (hardware and software) creates a good environment for the transition to new tools. Application of the systems approach to water resources planning, management, and operations has been established as one of the most important advances made in the field of water resources engineering. Based on the lessons learned, this contribution provides my personal view on the tools to be used in the future. Two paradigm shifts are discussed. The first one is focusing on the complexity of the water resources domain and the complexity of the modelling tools in an environment characterised by continuous rapid technological development. The second one deals with water-related data availability and natural variability of domain variables in time and space affecting the uncertainty of water resources decision making. 相似文献
Heuristic algorithms (HAs) are widely used in multi-objective reservoir optimal operation (MOROO) due to the rapidity of the calculation and simplicity of their design. The literature usually focuses on one or two categories of HAs and simply reviews the state of the art. To provide an overall understanding and a specific comparison of HAs in MOROO, differential evolution (DE), particle swarm optimisation (PSO), and artificial physics optimisation (APO), which serve as typical examples of the three categories of HAs, are compared in terms of the development and applications using a designed experiment. Besides, the general model with constraints and fitness function, and the solution process using a hybrid feasible domain restoration method and penalty function method are also presented. Taking a designed experiment with multiple scenarios, the mean average of the optimal objective function values, the standard deviation of optimal objective function values, the mean average of the computational time, and population diversity are used for comparisons. Results of the comparisons show that (a) the problem of optimal multipurpose reservoir long-term operation is a mathematic programming problem with narrow feasible region and monotonic objective function; (b) it is easy to obtain the same optimal objective function value, but different optimal solutions using HAs; and (c) comparisons do not result in a clear winner, but DE can be more appropriate for MOROO.
The objective of the development of the code system KESS is simulating the processes of core melting, relocation of core material to the lower head of the reactor pressure vessel (RPV) and its further heatup, modelling of fission product release and coolability of the core material. In the scope of the code development, IKEJET and IKEMIX were designed as key models for the breakup of a molten jet falling into a water pool, cooling of fragments and the formation of particulate debris beds. Calculations were performed with these codes, simulating FARO corium quenching experiments at saturated (L-28) and subcooled (L-31) conditions, as well as PREMIX experiments, e.g. PM-16. With the assumption of a reduced interfacial friction between water and steam as compared to usually applied laws, the melt breakup, energy release from the melt and pressurisation of the vessel observed in the experiments are reproduced with a reasonable accuracy. The model is further applied to reactor conditions, calculating the relocation of a mass of corium of 30 t into the lower plenum, its fragmentation and the formation of a particle bed. 相似文献
Using silhouettes in uncontrolled environments typically requires handling occlusions as well as changing or cluttered backgrounds,
which limits the applicability of most silhouette based methods. For the purpose of 3-D shape modeling, we show that representing
generic 3-D surfaces as implicit surfaces lets us effectively address these issues.
This desirable behavior is completely independent from the way the surface deformations are parame-trized. To show this, we
demonstrate our technique in three very different cases: Modeling the deformations of a piece of paper represented by an ordinary
triangulated mesh; reconstruction and tracking a person’s shoulders whose deformations are expressed in terms of Dirichlet
Free Form Deformations; reconstructing the shape of a human face parametrized in terms of a Principal Component Analysis model.
Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.
This work was supported in part by the Swiss National Science Foundation 相似文献
The defensive chemistry of juliformian millipedes is characterized mainly by benzoquinones (”quinone millipedes”), whereas the secretions of the putative close outgroup Callipodida are considered to be exclusively phenolic. We conducted a chemical screening of julid secretions for phenolic content. Most species from tribes Cylindroiulini (15 species examined), Brachyiulini (5 species examined), Leptoiulini (15 species examined), Uncigerini (2 species examined), Pachyiulini (3 species examined), and Ommatoiulini (2 species examined) had non-phenolic, in most cases exclusively benzoquinonic secretions. In contrast, tribes Cylindroiulini, Brachyiulini, and Leptoiulini also contained representatives with predominantly phenol-based exudates. In detail, p-cresol was a major compound in the secretions of the cylindroiulines Styrioiulus pelidnus and S. styricus (p-cresol content 93 %) and an undetermined Cylindroiulus species (p-cresol content 51 %), in the brachyiulines Brachyiulus lusitanus (p-cresol content 21 %) and Megaphyllum fagorum (p-cresol content 92 %), as well as in an undescribed Typhloiulus species (p-cresol content 32 %, Leptoiulini). In all species, p-cresol was accompanied by small amounts of phenol. The secretion of M. fagorum was exclusively phenolic, whereas phenols were accompanied by benzoquinones in all other species. This is the first incidence of clearly phenol-dominated secretions in the Julidae. We hypothesize a shared biosynthetic route to phenols and benzoquinones, with benzoquinones being produced from phenolic precursors. The patchy taxonomic distribution of phenols documented herein supports multiple independent regression events in a common pathway of benzoquinone synthesis rather than multiple independent incidences of phenol biosynthesis. 相似文献
Multiple human pose estimation is an important yet challenging problem. In an operating room (OR) environment, the 3D body poses of surgeons and medical staff can provide important clues for surgical workflow analysis. For that purpose, we propose an algorithm for localizing and recovering body poses of multiple human in an OR environment under a multi-camera setup. Our model builds on 3D Pictorial Structures and 2D body part localization across all camera views, using convolutional neural networks (ConvNets). To evaluate our algorithm, we introduce a dataset captured in a real OR environment. Our dataset is unique, challenging and publicly available with annotated ground truths. Our proposed algorithm yields to promising pose estimation results on this dataset. 相似文献