首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  国内免费   3篇
化学工业   29篇
矿业工程   2篇
能源动力   8篇
石油天然气   13篇
一般工业技术   2篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   7篇
  2005年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
51.
采用固相合成法制备Ca基固体碱催化剂,并利用N2吸附技术、XRD、FT IR及Hammett指示剂法对催化剂进行表征。采用双管反应器进行常压渣油催化裂解和气化再生实验,考察了反应温度、水/油质量比、剂/油质量比等对裂解产物中烯烃分布的影响,并考察了不同积炭量对待生剂气化性能的影响。结果表明,铝酸钙催化剂具有较强的碱强度和总碱量、较小的比表面积和孔容积。在反应温度750℃、水/油质量比10、剂/油质量比70时,催化裂解性能最优,乙烯质量产率达到214%,总烯烃质量产率为296%。积炭量对待生剂气化性能影响不明显。再生剂的总碱量略有减小,合成气以H2和CO2为主且含量达到89%(体积分数)。将催化裂解和气化再生整合,实现了热量耦合,达到综合利用重油的目标。  相似文献   
52.
利用微藻热化学液化制备生物油的研究进展   总被引:1,自引:0,他引:1  
微藻是制备生物质液体燃料的良好材料,利用微藻热化学液化制备生物油在环保和能源供应方向都具有非常重要的意义。目前国内外研究者主要采用快速热解液化和直接液化两种热化学转化技术进行以微藻为原料制备生物油的研究。快速热解生产过程在常压下进行,工艺简单、成本低、反应迅速、燃料油收率高、装置容易大型化,是目前最具开发潜力的生物质液化技术之一。但快速热解需要对原料进行干燥和粉碎等预处理,微藻含水率极高,会消耗大量的能量,使快速热解技术在以微藻为原料制备生物油方面受到限制。直接液化技术反应温度较快速热解低,原料无需烘干和粉碎等高耗能预处理过程,且能产生更优质的生物油,将会是微藻热化学液化制备生物油发展的主流方向,极具工业化前景。国内外研究者还尝试利用超临界液化、共液化、热化学催化液化、微波裂解液化等多种新型液化工艺进行微藻热化学液化制备生物油的实验研究。今后的主要研究方向应是将热化学液化原理研究、生产工艺开发、反应器研发、反应条件优化、产品精制等有机地结合起来,进行深入研究。同时应努力节约成本、降低能耗。  相似文献   
53.
田原宇  谢克昌  乔英云  田斌 《煤炭学报》2021,46(4):1137-1145
针对170多年来按照物理相似性、以显微组分为基础的传统煤化学研究方法普适性差和近70 a来借助现代分析仪器和量子化学计算得到的煤大分子结构模型无法解析煤结构和反应性的关联性的核心科学问题,提出表征可溶化程度的相对抽提率概念,构建了基于环己酮和CS2-NMP复合溶剂分步抽提煤的普适性可溶化体系,按照化学相似性将煤中有机物分为饱和分、芳香分,胶质、沥青质、碳青质和焦质6个化学族组分,开展不同变质程度煤化学族组分的物理化学结构、组成及其不同热解条件下的热解行为、热解特性、反应机理与动力学研究;提出煤热解反应主体由热离解的自由基主导的新观点,构建了普适性的煤热解自由基调控机理及其强化机制,并按照煤化学族组分的基元反应产生初始自由基、自由基调控和自由基复合3个阶段的反应机理合理有效地解析了煤等离子热解制乙炔过程反应历程与机理以及产物中乙炔选择性高达80%以上的现象、低阶煤快速热解提质实现焦油收率最大化的适宜条件等工业现象,从而形成了基于化学族组成的现代煤化学研究方法,实现了从分子水平识别、表征和描述煤的组成和物理与化学结构参数、煤中各种化学键和有害组分的存在形态,进而利用煤...  相似文献   
54.
煤本身是一种复杂的非均质混合物,含有大量的致密环状芳香烃。针对煤结构中各种C—C化学键,采用联苄、二苯甲烷、联苯作为煤C—C结构的模型化合物,分别在600℃,650℃,700℃,750℃下通过Py-GC/MS探究其热解产物分布情况;通过添加供氢溶剂(hydrogen donor solvent, HDS)捕获中间自由基验证其反应路径的存在;利用Gaussian09,Shermo,选取M06-2X泛函、def2-TZVP基组,加上D03(0)色散校正计算化学键解离焓(BDE)。通过实验与模拟相结合的方式印证自由基路径的存在。同时,用Py-GC/MS进行不同温度的模型化合物的热解实验。结果表明:模型化合物的热解均为自由基路径;由于C—C键类型不同,模型化合物的热解程度不同。各个键按能垒由大到小排序依次为Car—Car,Car—Cal,Cal—Cal,因此,热解程度由大到小的化合物依次为联苄、二苯甲烷、联苯。供氢溶剂可能会降低断键能垒;模型化合物热解中间自由基如...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号