首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   15篇
  国内免费   5篇
综合类   1篇
化学工业   7篇
金属工艺   22篇
矿业工程   7篇
能源动力   2篇
一般工业技术   3篇
冶金工业   49篇
  2024年   4篇
  2023年   5篇
  2022年   6篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2010年   10篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  1995年   1篇
排序方式: 共有91条查询结果,搜索用时 593 毫秒
21.
 酸洗污泥产量大、污染严重且难处理,常规固化填埋占用土地且浪费资源,将酸洗污泥配入电炉作为造渣剂使用,在生产中回收其中金属铁、铬和镍,并发挥CaO、CaF2等辅料功能,可实现污泥在冶金过程的资源化利用。通过FactSage热力学软件计算发现酸洗污泥中的金属铁、铬和镍绝大部分可回收进入金属液中,且金属液硫质量分数最高为0.014%,不会使金属液增硫。在此基础上,将酸洗污泥制成混合造渣剂,通过静态试验与吹氧熔炼试验发现,当造渣剂与酸洗污泥质量比为1[∶]1时,硫质量分数能够满足钢液要求,铬、镍回收率分别为66.04%和97.90%。  相似文献   
22.
低共熔溶剂(DES)具有挥发性低、制备简单、易于调控等优势。本文以三辛基甲基氯化铵和麝香草酚为原料制备了一种新型的疏水性低共熔溶剂(HDES),采用该HDES萃取分离锂离子电池正极材料浸出液中的Fe(Ⅲ)和Cu(Ⅱ)。考察了HDES组成、水相Cl-浓度等条件对各金属离子萃取分离性能的影响;设计了HDES分离浸出液中Fe(Ⅲ)和Cu(Ⅱ)的流程;采用紫外-可见吸收光谱和红外吸收光谱分析了HDES萃取Fe(Ⅲ)、Cu(Ⅱ)、Co(Ⅱ)的机理。结果表明:HDES的最佳组成为三辛基甲基氯化铵和麝香草酚的摩尔比为1∶1,氯离子最佳浓度为3 mol/L,酸度和温度对萃取分离性能影响较小。在最优条件下,分离因子βFe/Co和βCu/Co均大于20;经过三级错流萃取,HDES可提取模拟浸出液中99.9%以上的Fe(Ⅲ)和Cu(Ⅱ),采用1mol/L Na2SO4+0.5 mol/L H2SO4反萃三次,Fe(Ⅲ)和Cu(Ⅱ)总反萃率大于99.9%;该...  相似文献   
23.
为提高Cu-(Ti3SiC 2)p复合材料中铜与陶瓷的界面结合强度,以环境友好型抗坏血酸为还原剂,D-葡萄糖酸钠为络合剂,制备了Cu-Ti3SiC 2包覆粉末。研究了Ti3SiC 2粉末表面化学镀铜及其电化学性能,以及十二烷基硫酸钠(SDS)结合聚山梨酯80(Tween-80)表面活性剂对化学镀铜的改性效果。采用线性扫描伏安法和开路电位-时间法确定了该体系的电化学机理并进行参数优化。结果表明,提高反应温度,增加Cu(II)和抗坏血酸的浓度,可以提高极化电流密度,有利于加速化学镀。铜镀层新核从依附在(Ti3SiC 2)p粒子表面的银催化活化中心开始形成,表面具有较多Ag催化活性中心的微球会促进涂层的形成。采用复配改性剂SDS(6~22 g/L)+Tween-80 (8~12mL/L)对化学镀铜表面涂覆的效果优于单一改性剂。采用SM4 (SDS+Tween-80)改性剂达到最佳涂层效果的Cu与Ti3SiC 2的总摩尔比为1:0.54。静电效应和空间位阻效应对铜在(Ti3SiC 2)p表面的生长起着至关重要的协同控制作用。  相似文献   
24.
资源化消纳高浸铅银渣底吹+侧吹炼铅工艺优化   总被引:1,自引:0,他引:1  
铅锌资源互补是企业实现多金属综合回收的主流方向。针对汉中锌业底吹+侧吹炼铅系统混配高浸铅银渣、冶炼烟灰等含铅物料后,面临的氧化熔炼热量不足、炉渣过程控制困难、还原渣稳定性差等难题,在对原有工艺综合评价基础上,结合热力学分析和炉渣性能测定结果,提出了以渣型调控为主线的工艺优化思路。研究表明,底吹炉补热方式由硫磺为主转向以烟煤为主、硫铁矿为辅,可提升氧化熔炼温度至1050℃,还原熔炼降温至1250℃;控制还原熔炼渣FeO/SiO2质量比在1.2~1.6,CaO/SiO2质量比在0.4~0.6之间,ZnO≤20wt%,可确保混配含铅废料的直接炼铅过程顺行。工艺优化后,氧料比由120 Nm3/t降至110 Nm3/t,混配高浸铅银渣比例升至24wt%;氧化熔炼与还原熔炼烟尘率同比降低13.47%与15.82%,粗铅成本同比降低10.63%。  相似文献   
25.
李小明  贾李锋  邹冲  崔雅茹 《钢铁》2019,54(10):1-11
 不锈钢酸洗污泥含Fe、Ni、Cr等有价金属元素及较高的CaO、CaF2等可以利用的化合物,是重要的二次资源,其产生量约为不锈钢产量的2.5%~5.0%,国内年产酸洗污泥65万t以上。酸洗污泥因含有Cr6+及F-被归为有毒固废,常规固化填埋的处理方式占用土地且浪费资源。首先对比分析了典型酸洗污泥的物化性能;其次总结了不锈钢酸洗污泥提取有价金属、制备建材等资源化利用工艺的技术要点,分析了现有工艺存在的问题;最后提出了酸洗污泥作为冶金原辅料在冶炼企业闭路循环的绿色利用思路及技术进展,以期充分利用不锈钢酸洗污泥中的有价金属元素及可作为造渣材料的组分,消除污泥的环境危害。  相似文献   
26.
脱铜阳极泥熔炼高铅渣在熔点测定过程中由于挥发会导致测定结果偏离“真值”(本文称为“测不准”)。本文以卡尔多炉工艺熔炼脱铜阳极泥的高铅渣为研究对象,尝试通过研究挥发机制预测升温过程的适时炉渣组成,进一步以适时炉渣组成与熔点测定值对应,以消除挥发的影响。采用FactSage7.1软件计算熔炼渣的熔点和挥发反应的热力学,用半球法测定熔化温度,利用TG热重分析仪测定渣样的失重变化规律。结果表明:高温下含铅渣挥发主要是PbO以及少量的Bi2O3、As4O6、TeO2、SeO2和Sb4O6挥发所导致的,在950~1200℃高温段挥发最明显,当PbO含量分别为14.52%、25.07%、28.75%和41.25%的铅渣挥发率分别为35.25%、49.48%、55.92%和58.39%。Factsage计算熔点值比半球点及流动温度实测偏高。对脱铜阳极泥熔炼高铅渣所测半球点温度和流动温度与适时炉渣成分(基于原始炉渣成分及挥发失重的测算)对应,得到更接近“真值”的新成分-熔点的对应关系。  相似文献   
27.
南京钢铁公司采用100 t高阻抗超高功率电弧炉-100 t钢包精炼炉-5流150 mm×150 mm方坯连铸-连轧工艺生产GCr15轴承钢。GCr15轴承钢生产结果统计表明,通过炉料中配入55%~70%铁水,电弧炉出钢时碳含量0.22%~0.24%、磷含量0.004%~0.006%、硫含量0.040%~0.043%;精炼渣成分(%):53~58CaO、13~16SiO2、15~20Al2O3、3~5MgO,碱度2.3~3.3;精炼时全程吹Ar搅拌,67 Pa VD处理≥20min,连铸全程保护浇铸,使真空处理后GCr15轴承钢平均氧含量为10×10-6,铸坯中最低氧含量为7×10-6。  相似文献   
28.
镍渣直接还原提铁及同时制备胶凝材料的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过控制温度和配比,使镍渣经过一次焙烧反应后同时生成还原铁与胶凝性物质硅酸三钙(C3S)和硅酸二钙(C2S)。考察了配碳量、还原温度、还原时间、氧化钙加入量及升温方式对试验的影响。结果表明,先在1 000℃还原40min,然后在1 480℃还原90min的两段法升温法可以同时生成铁单质和胶凝物质,镍渣中铁回收率为72%,生成的胶凝材料含55%的C3S。  相似文献   
29.
离心机双头浇注双金属复合铸管   总被引:1,自引:1,他引:0  
刘环  崔雅茹  张胜利  余太钢 《铸造技术》2004,25(11):862-862,865
介绍了托轮式离心铸造机双头浇注技术在钢管内壁复合高铬耐磨铸铁复合管的生产工艺.实践证明:该工艺可拓宽铸件最大长度,扩大离心机的生产范围,解决复合器生产时容易产生的偏心问题和不均匀问题.  相似文献   
30.
以PbO-FeO-CaO-SiO2-ZnO为基本渣系,探讨了液态高铅渣和实际还原过程中,当Pb含量范围在2.5%~50.0%,ZnO含量范围在13%~6%时,渣组分变化对炉渣熔化性能的影响。利用热力学计算软件FactSage 6.2计算分析了该五元渣系的低熔点区域及特定组分的熔点,并结合半球法实验室测定结果对其进行了验证。研究表明,当w(FeO)/w(SiO2)在1.5~2.2,w(CaO)/w(SiO2)在0.4~1.0之间时,炉渣的熔点随FeO/SiO2比的增大而升高,同时随还原过程中Pb含量不断减少而升高;渣含Pb及ZnO量固定,w(FeO)/w(SiO2)在1.6~2.0范围内,w(CaO)从10%增加到22%时,炉渣的熔点随CaO含量增大而降低;渣中Pb含量从50%减小到2.5%,w(CaO)/w(SiO2)为0.35~0.54,w(FeO)/w(SiO2)为1.2~1.8时,炉渣熔点均低于1150℃;TG-DSC和XRD分析显示,1500℃时高铅渣、中铅渣和低铅渣失重率分别为38.69%,21.62%和3.95%。PbO的挥发导致高铅渣和中铅渣的大量失重,生成Fe3O4和Ca2SiO4等高熔点物相,这是导致FactSage理论计算熔点值与半球法实验熔化温度测定值之间存在-40~150℃偏差的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号