首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   11篇
  国内免费   5篇
化学工业   39篇
金属工艺   2篇
建筑科学   4篇
能源动力   9篇
轻工业   6篇
无线电   17篇
一般工业技术   38篇
冶金工业   1篇
原子能技术   6篇
自动化技术   50篇
  2023年   4篇
  2022年   11篇
  2021年   4篇
  2020年   7篇
  2019年   8篇
  2018年   16篇
  2017年   8篇
  2016年   11篇
  2015年   7篇
  2014年   11篇
  2013年   16篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1980年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
31.
Glass is an ideal substrate material to enable 2.5D and 3D packaging of ICs at low cost and high performance. However, it is a brittle material and is prone to failures during fabrication and operation. Large coefficient of thermal expansion (CTE) mismatch between copper and glass leads to thermomechanical stresses that can lead to glass cracking and delamination from glass interfaces. This paper focuses on modeling and reliability characterization of copper-plated through-package-vias (TPV) in glass packages. Thermomechanical simulations were carried out to obtain design guidelines for reliable TPVs in glass. Test-vehicles with different glass thicknesses and copper TPV fabrication conditions were fabricated for thermal cycling tests, resistance monitoring and failure analysis. The reliability characterization results showed good thermomechanical reliability of TPVs in ultra-thin glass panels.  相似文献   
32.
In this paper, we introduce new sets of 2D and 3D rotation, scaling and translation invariants based on orthogonal radial Racah moments. We also provide theoretical mathematics to derive them. Thus, this work proposes in the first case a new 2D radial Racah moments based on polar representation of an object by one-dimensional orthogonal discrete Racah polynomials on non-uniform lattice, and a circular function. In the second case, we present new 3D radial Racah moments using a spherical representation of volumetric image by one-dimensional orthogonal discrete Racah polynomials and a spherical function. Further 2D and 3D invariants are extracted from the proposed 2D and 3D radial Racah moments respectively will appear in the third case. To validate the proposed approach, we have resolved three problems. The 2D/ 3D image reconstruction, the invariance of 2D/3D rotation, scaling and translation, and the pattern recognition. The result of experiments show that the Racah moments have done better than the Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges rapidly to the original image using 2D and 3D radial Racah moments, and the test 2D/3D images are clearly recognized from a set of images that are available in COIL-20 database for 2D image, and PSB database for 3D image.  相似文献   
33.
The study on heat transport in composites is of fundamental importance in engineering design and for tailoring thermal and mechanical behaviour of materials. In this study, the thermal conductivity and thermal diffusivity of flax reinforced polypropylene (PP) composites were determined at room temperature. Chemical modification in the form of a biodegradable zein coating was applied to the flax nonwovens. The effect of fibre loading and chemical modification on the thermo-physical properties was investigated. Dielectric permittivity studies were also evaluated and the dielectric constant of fibre reinforced composites was found to be higher than that of PP. The heat flow and crystallinity effects of the composites were also determined by differential scanning calorimetric (DSC) studies. Zein modification of the flax fibres resulted in a decrease of thermal conductivity and diffusivity which was attributed to a decrease in velocity and mean free path of phonons due to increase in interfacial adhesion.  相似文献   
34.
This paper addresses the problem of localization in sensor networks where, initially, a certain number of sensors are aware of their positions (either by using GPS or by being hand‐placed) and are referred to as anchors. Our goal is to localize all sensors with high accuracy, while using a limited number of anchors. Sensors can be equipped with different technologies for signal and angle measurements. These measures can be altered by some errors because of the network environment that induces position inaccuracies. In this paper, we propose a family (AT‐Family) of three new distributed localization techniques in wireless sensor networks: free‐measurement (AT‐Free) where sensors have no capability of measure, signal‐measurement (AT‐Dist) where sensors can calculate distances, and angle‐measurement (AT‐Angle) where sensors can calculate angles. These methods determine the position of each sensor while indicating the accuracy of its position. They have two important properties: first, a sensor node can deduce if its estimated position is close to its real position and contribute to the positioning of others nodes; second, a sensor can eliminate wrong information received about its position. This last property allows to manage measure errors that are the main drawback of measure‐based methods such as AT‐Dist and AT‐Angle techniques. By varying the density and the error rate, simulations show that the three proposed techniques achieve good performances in term of high accuracy of localized nodes and less energy consuming while assuming presence of measure errors and considering low number of anchors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
35.
Various aspects of electrical and thermophysical properties of nanocomposites based on low‐density polyethylene matrix filled with nanostructuralized expanded graphite (EG) and standard, microsized graphite are presented in this article. A periodical method developed in the laboratory was used to measure simultaneously thermal conductivity, specific heat, and diffusivity of composites at room temperature. The effect of micro‐ and nanosized fillers on the final thermophysical and electrical behavior is investigated. It was found that the electrical conductivity of composites strongly depends not only on the filler content but also on the filler size. When the microsized graphite was used, the percolation concentration of the filler was found to be 15 vol%, whereas the percolation concentration of the filler in nanocomposites filled with EG of large sizes was significantly lower. Similarly, it was shown that the graphite significantly improves the thermophysical behavior of composites filled with micro‐ and nanofiller sizes. The thermal conductivity measured values were also compared with some theoretical models for the prediction of the thermal conductivity. POLYM. COMPOS., 2012. © 2013 Society of Plastics Engineers  相似文献   
36.
Thermodynamic properties of the mixed aqueous electrolyte systems of the lithium and cesium chlorides and sodium and cesium chlorides have been studied by the hygrometric method at 298.15 K. The water activities of these systems were measured at total molalities from 0.3 mol kg−1 to saturation for different ionic strength fractions y of CsCl for the systems CsCl–LiCl(aq) and CsCl–NaCl(aq) with y=0.33, 0.50 and 0.67. The results allow the deduction of osmotic coefficients. The experimental results are compared with calculations made using the Zdanovskii–Stokes–Robinson (ZSR), Kusik and Meissner (KM), Robinson and Stokes (RS), Lietzke and Stoughton (LSII), Reilly, Wood and Robinson (RWR) rules, and the Pitzer model. From these measurements, the Pitzer mixing ionic parameters are determined and used to obtain the solute activity coefficients of the mixture for different ionic strength fractions y.  相似文献   
37.
Mobile Networks and Applications - With the rapid development in wireless technologies and the Internet, the Internet of Things (IoT) is envisioned to be an integral part of our daily lives....  相似文献   
38.
39.
Multimedia Tools and Applications - This paper proposes a new appearance model for human tracking based on Mean Shift framework. The proposed method uses a novel target representation by using...  相似文献   
40.

In this work, we propose new sets of 2D and 3D rotation invariants based on orthogonal radial dual Hahn moments, which are orthogonal on a non-uniform lattice. We also present theoretical mathematics to derive them. Thus, this paper presents in the first case new 2D radial dual Hahn moments based on polar representation of an image by one-dimensional orthogonal discrete dual Hahn polynomials and a circular function. The dual Hahn polynomials are general case of Tchebichef and Krawtchouk polynomials. In the second case, we introduce new 3D radial dual Hahn moments employing a spherical representation of volumetric image by one-dimensional orthogonal discrete dual Hahn polynomials and a spherical function, which are orthogonal on a non-uniform lattice. The 2D and 3D rotational invariants are extracts from the proposed 2D and 3D radial dual Hahn moments respectively. In order to test the proposed approach, three problems namely image reconstruction, rotational invariance and pattern recognition are attempted using the proposed moments. The result of experiments shows that the radial dual Hahn moments have performed better than the radial Tchebichef and Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges quickly to the original image using 2D and 3D radial dual Hahn moments, and the test images are clearly recognized from a set of images that are available in COIL-20 database for 2D image and PSB database for 3D image.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号