首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   42篇
  国内免费   9篇
电工技术   4篇
综合类   7篇
化学工业   201篇
金属工艺   21篇
机械仪表   15篇
建筑科学   21篇
能源动力   56篇
轻工业   99篇
水利工程   7篇
石油天然气   14篇
无线电   84篇
一般工业技术   151篇
冶金工业   34篇
自动化技术   122篇
  2024年   4篇
  2023年   18篇
  2022年   44篇
  2021年   88篇
  2020年   54篇
  2019年   41篇
  2018年   61篇
  2017年   30篇
  2016年   45篇
  2015年   29篇
  2014年   42篇
  2013年   66篇
  2012年   43篇
  2011年   53篇
  2010年   26篇
  2009年   27篇
  2008年   23篇
  2007年   22篇
  2006年   11篇
  2005年   12篇
  2004年   16篇
  2003年   12篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1991年   5篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有836条查询结果,搜索用时 15 毫秒
11.
Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the experimental data and provisions of existing codes and standards. Possible ways for developing modern design techniques for SFHSC structures are emphasized.  相似文献   
12.
Chronic liver disease (CLD) is a global threat to the human population, with manifestations resulting from alcohol-related liver disease (ALD) and non-alcohol fatty liver disease (NAFLD). NAFLD, if not treated, may progress to non-alcoholic steatohepatitis (NASH). Furthermore, inflammation leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Vitexin, a natural flavonoid, has been recently reported for inhibiting NAFLD. It is a lipogenesis inhibitor and activates lipolysis and fatty acid oxidation. In addition, owing to its antioxidant properties, it appeared as a hepatoprotective candidate. However, it exhibits low bioavailability and low efficacy due to its hydrophobic nature. A novel rat model for liver cirrhosis was developed by CCL4/Urethane co-administration. Vitexin encapsulated liposomes were synthesized by the ‘thin-film hydration’ method. Polyethylene glycol (PEG) was coated on liposomes to enhance stability and stealth effect. The diseased rats were then treated with vitexin and PEGylated vitexin liposomes, administered intravenously and orally. Results ascertained the liposomal encapsulation of vitexin and subsequent PEG coating to be a substantial strategy for treating liver cirrhosis through oral drug delivery.  相似文献   
13.
The aerodynamic characteristics of wind turbines are closely related to the geometry of their blades. The innovation and the technological development of wind turbine blades can be centred on two tendencies. The first is to improve the shape of existing blades; the second is to design new shapes of blades. The aspiration in the two cases is to achieve an optimal circulation and hence enhancing some more ambitious aerodynamic characteristics. This paper presents an inverse design procedure, which can be adapted to both thin and thick wind turbine blade sections aiming to optimise the geometry for a prescribed distribution of bound vortices. A method for simulating the initial contour of the blade section is exposed, which simultaneously satisfy the aerodynamic and geometrical constraints under nominal conditions. A detailed definition of the function characterising the bound vortex distribution is presented. The inviscid velocity field and potential function distributions are obtained by the singularities method. In the design method implemented, these distributions and the circulation of bound vortices on the camber line of the blade profile, are used to rectify its camber in an iterative calculation leading to the final and optimal form of the blade section once convergence is attained. The scheme proposed has been used to design the entire blade of the wind turbine for a given span-wise distribution of bound circulation around the blade contour.  相似文献   
14.
15.
Nickel ferrites with high theoretical capacitance value as compared to the other metal oxides have been applied as electrode material for energy storage devices i.e. batteries and supercapacitors. High tendency towards aggregation and less specific surface area make the metal oxides poor candidate for electrochemical applications. Therefore, the improvements in the electrochemical properties of nickel ferrites (NiFe2O4) are required. Here, we report the synthesis of graphene nano-sheets decorated with spherical copper substituted nickel ferrite nanoparticles for supercapacitors electrode fabrication. The copper substituted and unsubstituted NiFe2O4 nanoparticles were prepared via wet chemical co-precipitation route. Reduced graphene oxide (rGO) was prepared via well-known Hummer's method. After structural characterization of both ferrite (Ni1-xCuxFe2O4) nanoparticles and rGO, the ferrite particles were decorated onto the graphene sheets to obtain Ni1-xCuxFe2O4@rGO nanocomposites. The confirmation of preparation of these nanocomposites was confirmed by scanning electron microscopy (SEM). The electrochemical measurements of nanoparticles and their nanocomposites (Ni0.9Cu0.1Fe2O4@rGO) confirmed that the nanocomposites due to highly conductive nature and relatively high surface area showed better capacitive behavior as compared to bare nanoparticles. This enhanced electrochemical energy storage properties of nanocomposites were attributed to the graphene and also supported by electrical (I-V) measurements. The cyclic stability experiments results showed ~65% capacitance retention after 1000 cycles. However this retention was enhanced from 65% to 75% for the copper substituted nanoparticles (Ni0.9Cu0.1Fe2O4) and 65–85% for graphene based composites. All this data suggest that these nanoparticles and their composites can be utilized for supercapacitors electrodes fabrication.  相似文献   
16.
Here, we have fabricated the spinel binary-metal oxide (FeCo2O4) via a solvent-free and cost-effective approach. The nanocomposites of the as-fabricated binary-metal spinel oxide have been prepared with three different conductive-matrices, namely r-GO, CNTs, and PANI, via ultra-sonication approach. The spinel phase and surface functionalities of the fabricated FeCo2O4 sample have been confirmed via XRD and FT-IR analyses, respectively. The morphological-structure and elemental composition of the fabricated samples have been probed via FESEM and EDX results. The role of added conductive-matrices in the improvement of the electrical conductivities of the fabricated nanocomposites has been investigated via I–V experiments. The electrochemical experiments, conducted in half-cell configuration, showed that FeCo2O4/PANI nanocomposite exhibited the highest specific capacitance (658.9 Fg-1) than that of the remaining two nanocomposites. Furthermore, FeCo2O4/PANI nanocomposite exhibited excellent cyclic stability as it lost just 8.3% of its initial specific capacitance even after 3000 cyclic tests. The superior capacitive-activity of the FeCo2O4/PANI nanocomposite is accredited to its high conductivity, large surface area, and synergy effects between the pseudocapacitance derived from the PANI and FeCo2O4 nanostructure. The electrochemical and electrical measurements suggested that FeCo2O4/PANI nanostructure is an emerging contender for energy storage applications.  相似文献   
17.
18.
The adaptive immune system has implications in pathology of Parkinson’s disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.  相似文献   
19.
In this study the rational design, synthesis, and anticancer activity of quinoline‐derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp3‐C?H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4‐trifluoro‐3‐hydroxy‐3‐(quinolin‐2‐ylmethyl)butanoate ( 1 ), 2‐benzyl‐1,1,1‐trifluoro‐3‐(quinolin‐2‐yl)propan‐2‐ol ( 2 ), and trifluoro‐3‐(isoquinolin‐1‐yl)‐2‐(thiophen‐2‐yl)propan‐2‐ol ( 3 ). Compounds 2 and 3 were found to be more toxic than compound 1 ; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2 , with an LC50 value of 14.14 μm , has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents.  相似文献   
20.
A facile route was adopted to blend the matrix. The PMMA/PEG blend was reinforced with three types of nanofillers, i.e., pristine MWCNT (P-CNT), amine functionalized MWCNT (PDA-EA-CNT) and nanobifiller i.e. nanodiamond functional MWCNT (PDA-EA-CNT-ND) to yield three different types of nanocomposites i.e. PMMA/PEG/P-CNT, PMMA/PEG/PDA-EA-CNT and PMMA/PEG/PDA-EA-CNT-ND. These nanocomposites were reinforced with nanofiller loading (1 wt. %, 3 wt. %, 5 wt. %, 10 wt. %, 30 wt. % and 50 wt. %) by solution casting method. Structure of composite and nanofillers was confirmed by FTIR. FESEM imaging revealed that nanocomposites have micro porous morphology. At high magnification, distribution of functionalized CNT/ND appears to be protruding out of the polymeric matrix. The TGA result suggests that the thermal stability of the nanocomposites was enhanced in comparison to PMMA due to grafting of filler molecules with PMMA/PEG macromolecules. The DTG results showed that the bifiller nanocomposites (PMMA/PEG/PDA-EA-CNT-ND) exhibited improved thermal stability with Tmax (431°C) as compared to P-CNT and amine functionalized CNT (PMMA/PEG/PDA-EA-CNT) with Tmax of 395°C and 418°C respectively. XRD results showed fine interaction between filler and the polymeric matrix. As the filler loading was increased the composites showed pronounced XRD peak at 25.9°, corresponding to (002) reflection of nanotubes. Significant improvement in the mechanical properties of composites was recorded with the reinforcement of fillers as compared to the neat matrix. The most significant improvement in tensile strength and elastic modulus was observed for the bifiller nanocomposites with 5 wt. % PDA-EA-CNT-ND. They showed a tensile strength and elastic modulus of 29.9 MPa and 1474.31 MPa respectively as compared to amine functionalized CNT with tensile strength (25.7) and elastic modulus (1466.99 MPa)and P-CNT with tensile strength(25 MPa) and elastic modulus (1155.75 MPa).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号