首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1849篇
  免费   135篇
  国内免费   25篇
电工技术   44篇
综合类   12篇
化学工业   426篇
金属工艺   48篇
机械仪表   58篇
建筑科学   80篇
矿业工程   4篇
能源动力   109篇
轻工业   244篇
水利工程   33篇
石油天然气   57篇
武器工业   2篇
无线电   187篇
一般工业技术   308篇
冶金工业   112篇
原子能技术   5篇
自动化技术   280篇
  2023年   28篇
  2022年   66篇
  2021年   120篇
  2020年   115篇
  2019年   114篇
  2018年   135篇
  2017年   106篇
  2016年   126篇
  2015年   71篇
  2014年   101篇
  2013年   172篇
  2012年   131篇
  2011年   103篇
  2010年   86篇
  2009年   69篇
  2008年   44篇
  2007年   47篇
  2006年   35篇
  2005年   31篇
  2004年   20篇
  2003年   10篇
  2002年   13篇
  2001年   10篇
  2000年   14篇
  1999年   18篇
  1998年   41篇
  1997年   27篇
  1996年   13篇
  1995年   19篇
  1994年   11篇
  1993年   11篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1973年   4篇
  1972年   2篇
排序方式: 共有2009条查询结果,搜索用时 109 毫秒
91.
对比研究了喷丸和喷丸与振动光饰复合处理对GH4169高温合金疲劳性能的影响,利用扫描电子显微镜、粗糙度仪、显微硬度计、X射线应力测试仪分析和测试了试样的表面形貌、表层组织、粗糙度、显微硬度、残余应力场,探讨了表面完整性与疲劳性能的内在联系及作用机制。结果表明:复合处理对GH4169高温合金疲劳性能的改善效果比单独喷丸强化处理更好;复合处理使GH4169高温合金的室温疲劳强度提高了21.6%;500℃预加热100 h处理使复合强化GH4169高温合金疲劳强度降低了6%,但仍较未喷丸处理状态提高了14.29%,即复合处理能够有效改善GH4169高温合金室温~500℃高温工况下的抗疲劳性能。  相似文献   
92.
Seed kernels of two cultivars (Chausa and Dusheri) of mango (Mangifera indica) were analysed for chemical composition, lipid classes, fatty acid composition, amino acid profile and chemical evaluation of protein quality. The seed kernels constituted about 18% of the total fruit and had 5% protein, 6–7% crude fat, 0.19–0.44% tannins, iodine value of 34–44 and saponification number 202–213. Oleic acid (42%) and stearic acid (39%) were the principal fatty acids in the oil. The in vitro digestibility was low in these cultivars, possibly due to the presence of tannins. Sulphur-containing amino acids (methionine+cystine) and isoleucine were the limiting amino acids in Chausa and Dusheri, respectively. The essential amino acid index and protein quality index were high, thus indicating the good quality of the protein in mango seed kernel.  相似文献   
93.
Chronic liver disease (CLD) is a global threat to the human population, with manifestations resulting from alcohol-related liver disease (ALD) and non-alcohol fatty liver disease (NAFLD). NAFLD, if not treated, may progress to non-alcoholic steatohepatitis (NASH). Furthermore, inflammation leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Vitexin, a natural flavonoid, has been recently reported for inhibiting NAFLD. It is a lipogenesis inhibitor and activates lipolysis and fatty acid oxidation. In addition, owing to its antioxidant properties, it appeared as a hepatoprotective candidate. However, it exhibits low bioavailability and low efficacy due to its hydrophobic nature. A novel rat model for liver cirrhosis was developed by CCL4/Urethane co-administration. Vitexin encapsulated liposomes were synthesized by the ‘thin-film hydration’ method. Polyethylene glycol (PEG) was coated on liposomes to enhance stability and stealth effect. The diseased rats were then treated with vitexin and PEGylated vitexin liposomes, administered intravenously and orally. Results ascertained the liposomal encapsulation of vitexin and subsequent PEG coating to be a substantial strategy for treating liver cirrhosis through oral drug delivery.  相似文献   
94.
95.
The main aim of this research is to decrease the amount of AlCl3 content that is very corrosive and hazardous in the catalytic system, required for the α-olefin oligomerization without substantial change of final oil features. This was successfully achieved by supporting AlCl3 on different carriers. More precisely, a series of supported bimetallic catalysts was synthesized by immobilization of AlCl3 and TiCl4 onto Al2O3, SiO2, and mixed supports, that is, Al2O3/FeCl3 and SiO2/FeCl3. It was found that silica and alumina-based catalysts had higher catalytic activities compared to support free AlCl3; however, this enhancement for silica-based supports was more significant. According to gel permeation chromatography (GPC) results, the use of single supports, that is, Al2O3 and SiO2, increased oligomer's molecular weight, while the application of mixed supports resulted in the decrease of molecular weight of the oligomers. Viscosity characteristics of the synthesized oligomers have also been studied at two different temperatures of 40 and 100°C (KV40 and KV100). The viscosity index (VI) values, derived from KV40 and KV100, of the prepared oligomers were in the range of 126–145. The molecular weight and termination mechanisms of the oligomers were studied by 1H-NMR spectroscopy. The obtained results disclosed that the employed reaction conditions led to the production of oligomer chains with various structures including vinylidene (Vd), and di and three-substituted vinylene (2Vn, 3Vn) structures.  相似文献   
96.
Bi-supported Ziegler–Natta catalysts (TiCl4/MCM-41/MgCl2 (ethoxide type)) were synthesized to improve the morphology and the properties of polyethylene. The morphology control is a crucial issue in polymerization process, while tailoring the properties of polymers is needed for specific applications. The catalysts were synthesized in different ratios of two supports with impregnation method. The polymerization process was carried out in atmospheric slurry reactor. The catalysts were characterized with scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM–EDX), inductively coupled plasma, Fourier transform infrared spectrometry (FTIR), and Brunauer-Emmett-Teller (BET) methods. The polymers were analyzed with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry, FTIR, and tensile-strength analyses. Ubbelohde viscometer and frequency sweep measurements showed that the synthesized polymers are ultra-high-molecular-weight polyethylene. Mechanical properties of polymers showed higher Young's modulus in samples containing MCM-41, having higher thermal stability supported by TGA analysis. SEM images of bi-supported catalyst showed a controlled spherical morphology with uniform size distribution. SEM analysis support that the polymers replicate their morphology from catalyst, improving their morphology comparing to MgCl2-supported catalyst. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48553.  相似文献   
97.
A continuous-flow ultrasound-assisted oxidative desulfurization(UAOD) of partially hydro-treated diesel has been investigated using hydrogen peroxide-formic acid as simple and easy to apply oxidation system. The effects of different operating parameters of oxidation stage including residence time(2–24 min), formic acid to sulfur molar ratio(10–150), and oxidant to sulfur molar ratio(5–35) on the sulfur removal have been studied using response surface methodology(RSM) based on Box–Behnken design. Considering the operating costs of the continuous-flow oxidation stage including chemical and electrical energy consumption, the appropriate values of operating parameters were selected as follows: residence time of 16 min, the formic acid to sulfur molar ratio of 54.47, and the oxidant to sulfur molar ratio of 8.24. In these conditions, the sulfur removal and the volume ratio of the hydrocarbon phase to the aqueous phase were 86.90% and 4.34, respectively. By drastic reduction in the chemical consumption in the oxidation stage, the volume ratio of the hydrocarbon phase to the aqueous phase was increased up to 10. Therefore, the formic acid to sulfur molar ratio and the oxidant to sulfur molar ratio were obtained 23.64 and 3.58, respectively, which lead to sulfur removal of 84.38% with considerable improvements on the operating cost of oxidation stage in comparison with the previous works.  相似文献   
98.
In the present study, the influences of three different types of carbon (carbon black, graphite, and petroleum coke) on SiC synthesis via mechanical activation and sintering were evaluated. In this regard, the phase components, morphology, and the formation mechanism were investigated. SiC nanoparticles were detected to be formed after 4 h of milling and sintering at 1450°C, regardless of the sources of carbon. The carbon types exert their effects on the morphology of the as‐synthesized particles, where carbon black leads to form rod‐like SiC particles and the other two carbon types result in semi‐spherical SiC particles. This is due to the dominant mechanism in the mentioned process. The rod‐like particles obtained from the carbon black‐containing powder were synthesized via the VSL mechanism, whereas the solid‐state reactions occurred to form the SiC particles in the graphite‐ or petroleum coke‐containing samples. In the VSL mechanism, any increase in the milling time leads to facilitate the SiC formation due to entrance of Fe debris, whereas in the other samples (graphite or petroleum coke) the procedure is reversed.  相似文献   
99.
Poly1‐hexene was prepared using a conventional heterogeneous Ziegler–Natta catalyst and its stereoregularity was characterized using 13C‐NMR analysis. New kind of high impact polystyrene (HIPS) was prepared by radical polymerization of styrene in the presence of different amounts of synthesized poly1‐hexene (PH) as impact modifier (HIPS/PH) and compared with conventional high impact polystyrene with polybutadiene (HIPS/PB) as rubber phase. Scanning electron microscopy (SEM) revealed that the dispersion of poly1‐hexene in polystyrene matrix was more uniform compared with it in HIPS/PB. The impact strength of HIPS/PH was 29–79% and 80–289% higher than that in HIPS/PB and neat polystyrene, respectively. FTIR was used to confirm more durability of HIPS/PH samples toward ozonation. To study the effect of rubber type and amount on the Tgs of polystyrene, differential scanning calorimetry was employed. Results obtained from TGA demonstrated higher thermal stability of HIPS/PH sample in comparison with conventional HIPS/PB one. Our obtained results suggest new high impact polystyrene that in all studied aspects has better performance than the conventional HIPS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43882.  相似文献   
100.
The present study is concerned with the mass transfer and kinetics study of zinc ions removal from aqueous solution using a cation exchange resin packed in a rotating cylindrical basket reactor. The effect of various experimental parameters on the rate of zinc ion removal, such as initial zinc ion concentration, packed bed rotation speed and temperature has been investigated. In addition to find a suitable equilibrium isotherm and kinetic model for the zinc ion removal in a batch reactor. The experimental isotherm data were analyzed using the Langmuir, Freundlich and D–R equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analyzed using four sorption kinetic models, pseudo-first and second-order equations, the Elovich and the intraparticle diffusion model equation, to determine the best fit equation for the biosorption of zinc ions onto purolite C-100 MH resin. Results show that the Elovich equation provides the best correlation for the biosorption process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号