首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6905篇
  免费   403篇
  国内免费   6篇
电工技术   98篇
综合类   28篇
化学工业   1946篇
金属工艺   183篇
机械仪表   152篇
建筑科学   416篇
矿业工程   39篇
能源动力   243篇
轻工业   464篇
水利工程   42篇
石油天然气   5篇
无线电   602篇
一般工业技术   1479篇
冶金工业   278篇
原子能技术   38篇
自动化技术   1301篇
  2024年   14篇
  2023年   101篇
  2022年   152篇
  2021年   268篇
  2020年   187篇
  2019年   191篇
  2018年   190篇
  2017年   186篇
  2016年   282篇
  2015年   299篇
  2014年   349篇
  2013年   505篇
  2012年   472篇
  2011年   626篇
  2010年   411篇
  2009年   417篇
  2008年   402篇
  2007年   354篇
  2006年   276篇
  2005年   246篇
  2004年   189篇
  2003年   149篇
  2002年   149篇
  2001年   73篇
  2000年   100篇
  1999年   92篇
  1998年   85篇
  1997年   81篇
  1996年   86篇
  1995年   55篇
  1994年   46篇
  1993年   48篇
  1992年   46篇
  1991年   33篇
  1990年   20篇
  1989年   12篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   9篇
  1976年   3篇
  1975年   4篇
  1972年   4篇
  1959年   2篇
  1954年   3篇
排序方式: 共有7314条查询结果,搜索用时 0 毫秒
991.
Historic masonry buildings under earthquakes – Load‐bearing behaviour in contradiction to the currently applied methods of analysis The stability of historic masonry buildings must be guaranteed not only under normal conditions, but also during natural disasters. The seismic assessment of the masonry buildings of the Gründerzeit (1840–1918) in Vienna is a central topic in the qualitative and constructive assessment. Although masonry construction has been used for many centuries, the realistic evaluation of the load‐bearing behaviour is still a complex challenge. The methods of analysis according to current regulations are only insufficiently able to reflect the real load‐bearing behaviour and the possible activation of global failure mechanisms. As a result, the simplified verification is often difficult to calculate for many historic buildings, and questionable reinforcement measures are taken to compensate, even though the buildings have already experienced several earthquakes and survived most of them without damage. The present work deals with the approaches of current methods of analysis and aims to identify problem points and to compare them with time history analysis, which is supported by a powerful material model based on test series. It is shown that the conventional analysis for the historic masonry buildings without consideration of the interaction and load transfer effects as well as the characteristic construction methods only partially reflect the real load‐bearing behaviour. The work is intended to be a contribution to the technical expert discussions on the seismic safety of historic buildings and to stimulate the discussion on the formulation of realistic methods of analysis.  相似文献   
992.
993.
Additive manufacturing promises high flexibility and customized product design. Powder bed fusion processes use a laser to melt a polymer powder at predefined locations and iterate the scheme to build 3D objects. The design of flowable powders is a critical parameter for a successful fabrication process that currently limits the choice of available materials. Here, a bottom‐up process is introduced to fabricate tailored polymer‐ and composite supraparticles for powder‐based additive manufacturing processes by controlled aggregation of colloidal primary particles. These supraparticles exhibit a near‐spherical shape and tailored composition, morphology, and surface roughness. These parameters can be precisely controlled by the mixing and size ratio of the primary particles. Polystyrene/silica composite particles are chosen as a model system to establish structure–property relations connecting shape, morphology, and surface roughness to the adhesion within the powder, which is accessed by tensile strength measurements. The adhesive properties are then connected to powder flowability and it is shown that the resulting powders allow the formation of dense powder films with uniform coverage. Finally, successful powder bed fusion is demonstrated by producing macroscopic single layer specimens with uniform distribution of nanoscale silica additives.  相似文献   
994.
995.
996.
997.
The colloidal probe technique, which is based on the atomic force microscope, revolutionizes direct force measurements in many fields, such as interface science or biomechanics. It allows for the first time to determine interaction forces on the single particle or cell level. However, for many applications, important “blind spots” remain, namely, the possibility to probe interaction potentials for nanoparticles or complex colloids with a soft outer shell. Definitely, these are colloidal systems that are currently of major industrial importance and interest from theory. The here‐presented novel approach allows for overcome the aforementioned limitations. Its applicability has been demonstrated for 300 nm sized carboxylate‐modified latex particles as well as sub‐micron core–shell particles with a soft poly‐N‐isopropylacrylamide hydrogel shell and a rigid silica core. For the latter, which until now cannot be studied by the colloidal probe technique, determined is the temperature dependency of electrosteric and adhesion forces has been determined on the single particle level.  相似文献   
998.
We present the first published results of near-infrared single-photon detection in aluminium lumped element kinetic inductance detectors (LEKIDs). Using aluminium as a well-understood material that follows conventional superconductor theory, we discuss and validate a model that describes the energy-resolving performance of a LEKID to single-photon absorption events. We also discuss data analysis techniques used to extract single-photon detections from noisy data. We measure an energy resolution of 662 meV for a 1550 nm photon source which is in close agreement to our model predictions for this non-optimised device limited by generation–recombination noise.  相似文献   
999.
Determining and keeping track of a material’s mechanical performance is very important for safety in the aerospace industry. The mechanical strength of alloy materials is precisely quantified in terms of its stress–strain relation. It has been proven that frequency-domain photothermoacoustic (FD-PTA) techniques are effective methods for characterizing the stress–strain relation of metallic alloys. PTA methodologies include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound (PAUS) generation which must be separately discussed because the relevant frequency ranges and signal detection principles are widely different. In this paper, a detailed theoretical analysis of the connection between thermoelastic parameters and stress/strain tensor is presented with respect to FD-PTA nondestructive testing. Based on the theoretical model, a finite element method (FEM) was further implemented to simulate the PT and PAUS signals at very different frequency ranges as an important analysis tool of experimental data. The change in the stress–strain relation has an impact on both thermal and elastic properties, verified by FEM and results/signals from both PT and PAUS experiments.  相似文献   
1000.
Koch  Henriette  Bortfeldt  Andreas  Wäscher  Gerhard 《OR Spectrum》2018,40(4):1029-1075
OR Spectrum - This paper deals with a special vehicle routing problem with backhauls where customers may want to receive items from a depot and, at the same time, return items back to the depot....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号