An Orthogonal frequency part multiplexing suffers from a considerable challenge due to a high peak to average power ratio (PAPR). Hence, an effective method such as partial transmits sequence (PTS) can avert this defiance by limit the design of PAPR. Therefore, an improving PAPR reduction performance via a novel approach is proposed by detaching each subblock into two parts furthermore exchanges the first sample with the final selection in each portion of the subblock to generate a new partitioning scheme. Several typical traditional segmentation schemes are used to analyze and apply the presented algorithm, such as adjacent, interleaving, and pseudo-random schemes. Besides, two scenarios are adopted based on simulation software in which the number of subcarriers is set to 128 and 256. Based on the results, a superior PAPR reduction performance is achieved based on the improved segmentation schemes regarding traditional strategies in both systems. Moreover, the enhanced adjusted PTS scheme poses a low computational complexity compared with that of the conventional schemes.
The use of rechargeable sensors is a promising solution for wireless sensor networks. On this type of network, mobile charging vehicles (MC) are used for charging sensors using wireless energy transfer (WET) technology. In on-demand charging, a sensor transmits a charging request to the service station, and the MC visits the sensor to transfer energy. The key disadvantages of utilizing MC-based WET are its high energy expenditure rate due to mobility, long service time, and slow charging rate. Because of these reasons, sensors deplete their energy and become dead before the MC reaches the requesting nodes to recharge. We have adapted a genetic algorithm-based partial charging scheme to serve the charging requests. Our objective is to improve the survival ratio of the network. Using comprehensive simulations, we analyze the performance of our proposed method and compare it to two other existing approaches. The simulation results demonstrate that our proposed algorithm improves the survival ratio by up to 20 % by developing a dynamic energy threshold function for transmitting charging requests from the sensors and a partial charging schedule using a genetic algorithm. 相似文献
Nitrophenols (NPs) and their derivatives are highly toxic, mutagenic and bio-refractory pollutants commonly present in natural water resources and industrial wastewater. To remove NPs from water, N-doped graphitic carbon (NGC) and NGC adsorbent containing titanium dioxide (NGC–TiO2) were synthesized by pyrolysis of microcrystalline cellulose and dopamine mixture, and the mixture along with TiO2 at 500°C, respectively. NCG-TiO2 was thoroughly characterized using various analytical techniques. NP adsorption on the NGC–TiO2 adsorbent surface was studied by varying the pH, initial concentration of NP, and adsorbent dose. The results showed that the most efficient adsorption was achieved at pH 3. After 4?h sonication at pH 3, 80% 4-NP adsorption was achieved using NGC–TiO2 compared to 74% with NGC adsorbent. The percentage removal of 4-NP was higher than 3-NP which was also higher than 2,4-DNP using NGC–TiO2. 4-NP adsorption best fitted to the Langmuir isotherm plot with R2 value of 0.9981 and adsorption capacity of 52.91?mg?g?1. The adsorption process of NP was found to follow a pseudo-second-order kinetic model. The rate constant value for the adsorption of 10?4?M 4-NP at pH 3 using 10?mg of NGC–TiO2 adsorbent was found to be 3.76?×?10?5?g.mg?1.min?1相似文献
This paper emphasizes on establishment of traceability for the strain measuring data acquisition system in terms of voltage. If this amplifier’s output voltage is not calibrated then traceability chain breaks. To complete the traceability chain, the amplifier’s output voltage has been calibrated for corresponding strain. The sensitivity is calculated using calibration results and further used to feed in data acquisition system to display the result in terms of force/strain. 相似文献
We have developed a two-step technique for synthesizing dichlorosuccinyl peroxide at room temperature, starting from succinic anhydride. It reacts with silanated glass fabric or beads at room temperature. The macroinitiator thus formed can be used for the polymerization of methyl methacrylate, MMA. We show that the MMA is grafted to the surface of glass giving a chemically bonded ultrathin coating, as confirmed by the FTIR analysis and electron micrography. 相似文献
The highly transmittable and infectious COVID-19 remains a major threat worldwide, with the elderly and comorbid individuals being the most vulnerable. While vaccines are currently available, therapeutic drugs will help ease the viral outbreak and prevent serious health outcomes. Epigenetic modifications regulate gene expression through changes in chromatin structure and have been linked to viral pathophysiology. Since epigenetic modifications contribute to the life cycle of the virus and host immune responses to infection, epigenetic drugs are promising treatment targets to ameliorate COVID-19. Deficiency of the multifunctional secosteroid hormone vitamin D is a global health threat. Vitamin D and its receptor function to regulate genes involved in immunity, apoptosis, proliferation, differentiation, and inflammation. Amassed evidence also indicates the biological relations of vitamin D with reduced disease risk, while its receptor can be modulated by epigenetic mechanisms. The immunomodulatory effects of vitamin D suggest a role for vitamin D as a COVID-19 therapeutic agent. Therefore, this review highlights the epigenetic effects on COVID-19 and vitamin D while also proposing a role for vitamin D in COVID-19 infections. 相似文献
Constrained binding peptides (peptide aptamers) may serve as tools to explore protein conformations and disrupt protein-protein interactions. The quality of the protein scaffold, by which the binding peptide is constrained and presented, is of crucial importance. SQT (Stefin A Quadruple Mutant-Tracy) is our most recent development in the Stefin A-derived scaffold series. Stefin A naturally uses three surfaces to interact with its targets. SQT tolerates peptide insertions at all three positions. Peptide aptamers in the SQT scaffold can be expressed in bacterial, yeast and human cells, and displayed as a fusion to truncated pIII on phage. Peptides that bind to CDK2 can show improved binding in protein microarrays when presented by the SQT scaffold. Yeast two-hybrid libraries have been screened for binders to the POZ domain of BCL-6 and to a peptide derived from PBP2', specific to methicillin-resistant Staphylococcus aureus. Presentation of the Noxa BH3 helix by SQT allows specific interaction with Mcl-1 in human cells. Together, our results show that Stefin A-derived scaffolds, including SQT, can be used for a variety of applications in cellular and molecular biology. We will henceforth refer to Stefin A-derived engineered proteins as Scannins. 相似文献
Deposit ‘sloughing’ from ‘waxy’ crude oils has been described in the literature as a possible mechanism, leading to partial or complete dislodging of the deposit from the pipe wall due to changes in flow parameters. A bench‐scale flow loop apparatus was used to investigate ‘sloughing’ with prepared single‐phase ‘waxy’ mixtures of a multicomponent paraffinic wax dissolved in a multicomponent solvent. Experiments were performed to study the changes in the deposit‐layer thickness due to step increments in the ‘waxy’ mixture flow rate, the mixture temperature, and the coolant temperature. It was observed that the deposit‐layer thickness decreased with an increase in each of the three parameters; however, a complete or sudden dislodging of the deposit‐layer did not occur in any of the experiments. A steady‐state heat‐transfer model was used to predict the variation in the deposit mass or thickness due to changes in the selected parameters. In each case, the step‐wise decrease in the deposit thickness, as observed experimentally, was predicted to be caused by changes in the thermal resistance and/or thermal driving force. 相似文献