首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   18篇
  国内免费   2篇
电工技术   1篇
综合类   2篇
化学工业   138篇
金属工艺   5篇
机械仪表   11篇
建筑科学   13篇
能源动力   11篇
轻工业   56篇
水利工程   4篇
石油天然气   2篇
无线电   23篇
一般工业技术   63篇
冶金工业   45篇
自动化技术   51篇
  2024年   1篇
  2023年   6篇
  2022年   33篇
  2021年   42篇
  2020年   17篇
  2019年   16篇
  2018年   7篇
  2017年   7篇
  2016年   19篇
  2015年   16篇
  2014年   7篇
  2013年   30篇
  2012年   22篇
  2011年   27篇
  2010年   23篇
  2009年   11篇
  2008年   13篇
  2007年   20篇
  2006年   10篇
  2005年   10篇
  2004年   16篇
  2003年   7篇
  2001年   7篇
  2000年   4篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1969年   1篇
  1968年   1篇
  1961年   2篇
  1960年   1篇
  1956年   1篇
排序方式: 共有425条查询结果,搜索用时 0 毫秒
171.
Epoxides dissolved in acetone can be converted almost quantitatively in acetonides in the presence of catalytic amounts of erbium(III) triflate. The procedure can be usefully applied to other substrates and can be extended to other ketones.  相似文献   
172.
Rapid and affordable detection of analytes is critical in diagnostic technologies, but current methods are typically expensive and unsuitable for field detection. Lipidic cubic phases are optically isotropic, transparent lyotropic liquid crystals (LC), containing highly confined water nanochannels in‐between percolating lipid bilayers following defined space groups. Due to this nanoconfinement, the water in these systems provides a unique environment for chemical and enzymatic reactions. Here, it is shown that during the in meso peroxidase enzymatic reaction, the converted product crystallizes within the mesophase domains, generating a detectable birefringence signal and a new general assay principle is presented for the detection of an unprecedented vast class of analytes using such birefringence as sole optical output signal. By exploiting bienzymatic cascade reactions or introducing an enzyme‐linked immunosorbent assay based on birefringence (Birefringent‐ELISA), this approach is used for real‐time detection of exemplary analytes, such as glucose and cholesterol, model pathogenic microorganisms, Escherichia coli, and viruses such as Ebola and HIV. It is also shown how the same technology enables the rapid, naked‐eye screening of malaria infection via in meso detection of hemozoin crystallites. This new technology is general and readily adaptable to the rapid detection of virtually any type of analyte, such as disease biomarkers, viruses, bacteria, and parasites.  相似文献   
173.
Glycosidases, the enzymes responsible in nature for the catabolism of carbohydrates, are well-studied catalysts widely used in industrial biotransformations and oligosaccharide synthesis, which are also attractive targets for drug development. Glycosidases from hyperthermophilic organisms (thriving at temperatures > 85 °C) are also interesting models to understand the molecular basis of protein stability and to produce robust tools for industrial applications. Here, we review the results obtained in the last two decades by our group on a β-glycosidase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Our findings will be presented in the general context of the stability of proteins from hyperthermophiles and of the chemo-enzymatic synthesis of oligosaccharides.  相似文献   
174.
Piezo‐ and ferroelectric nanofibers of the polymer poly(vinylidenefluoride) (PVDF) have been widely employed in strain and pressure sensors as well as nanogenerators for energy harvesting. Despite this interest, the mechanism of electromechanical transduction is under debate and a deeper knowledge about relevant piezoelectric or electrostatic properties of nanofibers is crucial to optimize transduction efficiency. Here poly(vinylidenefluoride‐trifluoroethylene) nanofibers at different electrospinning conditions are prepared. Macroscopic electromechanical response of fiber mats with microscopic analysis of single nanofibers performed by piezoelectric and electrostatic force microscopy are compared. The results show that electrospinning favors the formation of the piezoelectric β‐phase in the polymer and leads directly to piezoelectric properties that are comparable to annealed thin films. However, during electrospinning the electric field is not strong enough to induce direct ferroelectric domain polarization. Instead accumulation of triboelectric surface charges and trapped space charge is observed in the polymer that explain the electret like macroscopic electromechanical response.  相似文献   
175.
Mitochondrial benzodiazepine-receptor (mBzR) ligands constitute a heterogeneous class of compounds that show a pleiotropic spectrum of effects within the cells, including the modulation of apoptosis. In this paper, a novel synthetic 2-phenylindol-3-ylglyoxylamide derivative, N,N-di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide (PIGA), which shows high affinity and selectivity for the mBzR, is demonstrated to induce apoptosis in rat C6 glioma cells. PIGA was able to dissipate mitochondrial transmembrane potential (DeltaPsim) and to cause a significant cytosolic accumulation of cytochrome c. Moreover, typical features of apoptotic cell death, such as caspase-3 activation and DNA fragmentation, were also detected in PIGA-treated cells. Our data expand the knowledge on mBzR ligand-mediated apoptosis and suggest PIGA as a novel proapoptotic compound with therapeutic potential against glial tumours, in which apoptosis resistance has been reported to be involved in carcinogenesis.  相似文献   
176.
Binding of an indoloquinoline derivative with an aminoalkyl side chain to a truncated sequence from the MYC promoter region was studied through isothermal titration calorimetry (ITC). The targeted MYC3 sequence lacks 3′‐flanking nucleotides and forms a monomeric parallel quadruplex (G4) with a blunt‐ended 3′‐outer tetrad under the solution conditions employed. Analysis of ITC isotherms reveals multiple binding equilibria with the initial formation of a 1:2 ligand/quadruplex complex. Evaluation of electrophoretic mobilities as well as NMR spectral data confirm ligand‐induced dimerization of MYC3 quadruplexes with the ligand sandwiched between the two 3′‐outer tetrads. Additional ligand molecules in excess bind to the 5′‐outer tetrads of the sandwich complex. Such a ligand‐promoted G4 dimerization may be exploited for the controlled assembly or disassembly of G4 aggregates to expand on present quadruplex‐based technologies.  相似文献   
177.
Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell functions. In biological fluids, their distribution is sex-specific and is at variance in aging and many disorders. The aim of this study is to identify SL species associated with the decelerated aging of centenarians. SLs, extracted from serum of adults (Ad, 35–37 years old), aged (Ag, 75–77 years old) and centenarian (C, 105–107 years old) women were analyzed by LC-MS/MS in combination with mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide (dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0, 22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine (Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphingomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it into glycosphingolipids.  相似文献   
178.
Exfoliated nanocomposites of polyamide 6 (PA6) with residual monomer and an organically treated montmorillonite (3 and 5 wt %) were produced by twin‐screw extrusion. The composites had their steady state, dynamic, and transient rheological properties measured by parallel‐plates rheometry; their exfoliation level was characterized by wide angle X‐rays diffraction (WAXD) and transmission electron microscopy (TEM). The characterization showed as follows: (i) the nanoclay's lamellas were well dispersed and distributed thru the PA6, (ii) the postpolymerization of the residual monomer produced more branched chains than linear ones in the pure PA6, (iii) the nanoclay's lamellas acted as entanglement points in the nanocomposites, and (iv) the molecular weight of the PA6 in the nanocomposites decreased. Blown films of the nanocomposites were produced by single screw extrusion; the die pressure during the film blowing of the nanocomposites strongly decreased. The tensile mechanical properties of the blown films were also measured. Along the machine direction (MD), the best mechanical properties were obtained with the 5 wt % nanocomposite, whereas along the transverse direction (TD), the 3 wt % nanocomposite had the best behavior. The glass transition temperature (Tg) of the blown films was measured by dynamic mechanical thermal analyses (DMTA). The 5 wt % nanocomposite had the highest Tg of all the films. The optical properties were measured by spectrophotometry; the nanoclay decreased the films' haze, but the level of transmittance was not affected. The water vapor and oxygen permeability rates of the nanocomposites films were found to be lower than in the pure PA6 blown film as a result of a tortuosity effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
179.
180.
Egg deposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprouts plants induces indirect defense by changing the leaf surface, which arrests the egg parasitoid Trichogramma brassicae. Previous studies revealed that this indirect defense response is elicited by benzyl cyanide (BC), which is present in the female accessory reproductive gland (ARG) secretion and is released to the leaf during egg deposition. Here, we aimed (1) to elucidate whether P. brassicae eggs induce parasitoid-arresting leaf surface changes in another Brassicacean plant, i.e., Arabidopsis thaliana, and, if so, (2) to chemically characterize the egg-induced leaf surface changes. Egg deposition by P. brassicae on A. thaliana leaves had similar effects to egg deposition on Brussels sprouts with respect to the following: (a) Egg deposition induced leaf surface changes that arrested T. brassicae egg parasitoids. (b) Application of ARG secretion of mated female butterflies or of BC to leaves had the same inductive effects as egg deposition. Based on these results, we conducted GC-MS analysis of leaf surface compounds from egg- or ARG-induced A. thaliana leaves. We found significant quantitative differences in epicuticular waxes compared to control leaves. A discriminant analysis separated surface extracts of egg-laden, ARG-treated, untreated control and Ringer solution-treated control leaves according to their quantitative chemical composition. Quantities of the fatty acid tetratriacontanoic acid (C34) were significantly higher in extracts of leaf surfaces arresting the parasitoids (egg-laden or ARG-treated) than in respective controls. In contrast, the level of tetracosanoic acid (C24) was lower in extracts of egg-laden leaves compared to controls. Our study shows that insect egg deposition on a plant can significantly affect the quantitative leaf epicuticular wax composition. The ecological relevance of this finding is discussed with respect to its impact on the behavior of egg parasitoids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号