首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260132篇
  免费   3240篇
  国内免费   819篇
电工技术   5143篇
综合类   334篇
化学工业   37233篇
金属工艺   10258篇
机械仪表   8489篇
建筑科学   6103篇
矿业工程   1078篇
能源动力   6395篇
轻工业   22858篇
水利工程   2564篇
石油天然气   3910篇
武器工业   70篇
无线电   34738篇
一般工业技术   50082篇
冶金工业   46530篇
原子能技术   5422篇
自动化技术   22984篇
  2021年   2037篇
  2019年   2034篇
  2018年   3469篇
  2017年   3531篇
  2016年   3732篇
  2015年   2321篇
  2014年   4049篇
  2013年   11285篇
  2012年   6565篇
  2011年   8874篇
  2010年   6981篇
  2009年   7849篇
  2008年   8676篇
  2007年   8614篇
  2006年   7805篇
  2005年   7140篇
  2004年   6885篇
  2003年   6731篇
  2002年   6370篇
  2001年   6469篇
  2000年   6169篇
  1999年   6252篇
  1998年   14239篇
  1997年   10269篇
  1996年   8110篇
  1995年   6411篇
  1994年   5711篇
  1993年   5581篇
  1992年   4551篇
  1991年   4211篇
  1990年   4048篇
  1989年   3779篇
  1988年   3625篇
  1987年   3170篇
  1986年   3065篇
  1985年   3610篇
  1984年   3382篇
  1983年   3031篇
  1982年   2850篇
  1981年   2951篇
  1980年   2770篇
  1979年   2648篇
  1978年   2499篇
  1977年   2945篇
  1976年   3554篇
  1975年   2316篇
  1974年   2312篇
  1973年   2318篇
  1972年   1849篇
  1971年   1745篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.  相似文献   
102.
The alpha particle-emitting radionuclide astatine-211 (211At) is of interest for targeted radiotherapy; however, low in vivo stability of many 211At-labeled cancer-targeting molecules has limited its potential. As an alternative labeling method, we evaluated whether a specific type of astatinated aryl compound that has the At atom in a higher oxidation state might be stable to in vivo deastatination. In the research effort, para-iodobenzoic acid methyl ester and dPEG4-amino acid methyl ester derivatives were prepared as HPLC standards. The corresponding para-stannylbenzoic acid derivatives were also prepared and labeled with 125I and 211At. Oxidization of the [125I]iodo- and [211At]astato-benzamidyl-dPEG4-acid methyl ester derivatives provided materials for in vivo evaluation. A biodistribution was conducted in mice with coinjected oxidized 125I- and 211At-labeled compounds. The oxidized radioiodinated derivative was stable to in vivo deiodination, but unfortunately the oxidized [211At]astatinated benzamide derivative was found to be unstable under the conditions of isolation by radio-HPLC (post animal injection). Another biodistribution study in mice evaluated the tissue concentrations of coinjected [211At]NaAtO3 and [125I]NaIO3. Comparison of the tissue concentrations of the isolated material from the oxidized [211At]benzamide derivative with those of [211At]astatate indicated the species obtained after isolation was likely [211At]astatate.  相似文献   
103.
Longevity is a unique human phenomenon and a highly stable trait, characterized by polygenicity. The longevity phenotype occurs due to the ability to successfully withstand the age-related genomic instability triggered by Alu elements. The purpose of our cross-sectional study was to evaluate the combined contribution of ACE*Ya5ACE, CDH4*Yb8NBC516, COL13A1*Ya5ac1986, HECW1*Ya5NBC182, LAMA2*Ya5-MLS19, PLAT*TPA25, PKHD1L1*Yb8AC702, SEMA6A*Yb8NBC597, STK38L*Ya5ac2145 and TEAD1*Ya5ac2013 Alu elements to longevity. The study group included 2054 unrelated individuals aged from 18 to 113 years who are ethnic Tatars from Russia. We analyzed the dynamics of the allele and genotype frequencies of the studied Alu polymorphic loci in the age groups of young (18–44 years old), middle-aged (45–59 years old), elderly (60–74 years old), old seniors (75–89 years old) and long-livers (90–113 years old). Most significant changes in allele and genotype frequencies were observed between the long-livers and other groups. The search for polygenic predictors of longevity was performed using the APSampler program. Attaining longevity was associated with the combinations LAMA2*ID + CDH4*D (OR = 2.23, PBonf = 1.90 × 10−2) and CDH4*DD + LAMA2*ID + HECW1*D (OR = 4.58, PBonf = 9.00 × 10−3) among persons aged between 18 and 89 years, LAMA2*ID + CDH4*D + SEMA6A*I for individuals below 75 years of age (OR = 3.13, PBonf = 2.00 × 10−2), LAMA2*ID + HECW1*I for elderly people aged 60 and older (OR = 3.13, PBonf = 2.00 × 10−2) and CDH4*DD + LAMA2*D + HECW1*D (OR = 4.21, PBonf = 2.60 × 10−2) and CDH4*DD + LAMA2*D + ACE*I (OR = 3.68, PBonf = 1.90 × 10−2) among old seniors (75–89 years old). The key elements of combinations associated with longevity were the deletion alleles of CDH4 and LAMA2 genes. Our results point to the significance for human longevity of the Alu polymorphic loci in CDH4, LAMA2, HECW1, SEMA6A and ACE genes, involved in the integration systems.  相似文献   
104.
105.
Hispolon, a phenolic pigment isolated from the mushroom species Phellinus linteus, has been investigated for anti-inflammatory, antioxidant, and anticancer properties; however, low solubility and poor bioavailability have limited its potential clinical translation. In this study, the inclusion complex of hispolon with Sulfobutylether-β-cyclodextrin (SBEβCD) was characterized, and the Hispolon-SBEβCD Complex (HSC) was included within the sterically stabilized liposomes (SL) to further investigate its anticancer activity against melanoma cell lines. The HSC-trapped-Liposome (HSC-SL) formulation was investigated for its sustained drug delivery and enhanced cytotoxicity. The inclusion complex in the solid=state was confirmed by a Job’s plot analysis, molecular modeling, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). The HSC-SL showed no appreciable deviation in size (<150 nm) and polydispersity index (<0.2) and improved drug encapsulation efficiency (>90%) as compared to control hispolon liposomes. Individually incorporated hispolon and SBEβCD in the liposomes (H-CD-SL) was not significant in loading the drug in the liposomes, compared to HSC-SL, as a substantial amount of free drug was separated during dialysis. The HSC-SL formulation showed a sustained release compared to hispolon liposomes (H-SLs) and Hispolon-SBEβCD liposomes (H-CD-SLs). The anticancer activity on melanoma cell lines (B16BL6) of HSC and HSC-SL was higher than in H-CD-SL and hispolon solution. These findings suggest that HSC inclusion in the HSC-SL liposomes stands out as a potential formulation approach for enhancing drug loading, encapsulation, and chemotherapeutic efficiency of hispolon and similar water insoluble drug molecules.  相似文献   
106.
Superparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaxMn1−xFe2O4) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology. Consequently, changes were obtained in the optical and magnetic properties that were studied through UV-Vis absorption and SQUID, respectively. XRD and Raman spectroscopy studies were carried out to assess the microstructural changes associated with stoichiometry of the particles, and the stability in physiological pH was studied through DLS. The nanoparticles displayed high values of magnetization and heating efficiency for several alternating magnetic field conditions, compatible with biological applications. Hereby, the employed method provides a promising strategy for the development of particles with adequate properties for magnetic hyperthermia applications, such as drug delivery and cancer therapy.  相似文献   
107.
Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.  相似文献   
108.
Modulation of lipid metabolism is a well-established cancer hallmark, and SCD1 has been recognized as a key enzyme in promoting cancer cell growth, including in glioblastoma (GBM), the deadliest brain tumor and a paradigm of cancer resistance. The central goal of this work was to identify, by MS, the phospholipidome alterations resulting from the silencing of SCD1 in human GBM cells, in order to implement an innovative therapy to fight GBM cell resistance. With this purpose, RNAi technology was employed, and low serum-containing medium was used to mimic nutrient deficiency conditions, at which SCD1 is overexpressed. Besides the expected increase in the saturated to unsaturated fatty acid ratio in SCD1 silenced-GBM cells, a striking increase in polyunsaturated chains, particularly in phosphatidylethanolamine and cardiolipin species, was noticed and tentatively correlated with an increase in autophagy (evidenced by the increase in LC3BII/I ratio). The contribution of autophagy to mitigate the impact of SCD1 silencing on GBM cell viability and growth, whose modest inhibition could be correlated with the maintenance of energetically associated mitochondria, was evidenced by using autophagy inhibitors. In conclusion, SCD1 silencing could constitute an important tool to halt GBM resistance to the available treatments, especially when coupled with a mitochondria disrupter chemotherapeutic.  相似文献   
109.
American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 μM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki’ inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).  相似文献   
110.
Preclinical and clinical studies have shown that traumatic hemorrhage (TH) induces early complement cascade activation, leading to inflammation-associated multiple-organ dysfunction syndrome (MODS). Several previous studies have demonstrated the beneficial effects of complement inhibition in anesthetized (unconscious) animal models of hemorrhage. Anesthetic agents profoundly affect the immune response, microcirculation response, and coagulation patterns and thereby may confound the TH research data acquired. However, no studies have addressed the effect of complement inhibition on inflammation-driven MODS in a conscious model of hemorrhage. This study investigated whether early administration of decay-accelerating factor (CD55/DAF, a complement C3/C5 inhibitor) alleviates hemorrhage-induced organ damage and how DAF modulates hemorrhage-induced organ damage. DAF was administered to unanesthetized male Sprague Dawley rats subjected to pressure-controlled hemorrhage followed by a prolonged (4 h) hypotensive resuscitation with or without lactated Ringer’s (LR). We assessed DAF effects on organ protection, tissue levels of complement synthesis and activation, T lymphocyte infiltration, fluid resuscitation requirements, and metabolic acidosis. Hemorrhage with (HR) or without (H) LR resuscitation resulted in significantly increased C3, C5a, and C5b-9 deposition in the lung and intestinal tissues. HR rats had significantly higher tissue levels of complement activation/deposition (particularly C5a and C5b-9 in the lung tissues), a higher but not significant amount of C3 and C5b-9 pulmonary microvascular deposition, and relatively severe injury in the lung and intestinal tissues compared to H rats. DAF treatment significantly reduced tissue C5b-9 formation and C3 deposition in the H or HR rats and decreased tissue levels of C5a and C3 mRNA in the HR rats. This treatment prevented the injury of these organs, improved metabolic acidosis, reduced fluid resuscitation requirements, and decreased T-cell infiltration in lung tissues. These findings suggest that DAF has the potential as an organ-protective adjuvant treatment for TH during prolonged damage control resuscitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号