首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1590篇
  免费   153篇
  国内免费   4篇
电工技术   15篇
综合类   2篇
化学工业   475篇
金属工艺   15篇
机械仪表   39篇
建筑科学   59篇
矿业工程   2篇
能源动力   68篇
轻工业   271篇
水利工程   21篇
石油天然气   6篇
无线电   98篇
一般工业技术   215篇
冶金工业   97篇
原子能技术   5篇
自动化技术   359篇
  2024年   10篇
  2023年   27篇
  2022年   80篇
  2021年   108篇
  2020年   62篇
  2019年   78篇
  2018年   88篇
  2017年   87篇
  2016年   108篇
  2015年   64篇
  2014年   88篇
  2013年   139篇
  2012年   107篇
  2011年   142篇
  2010年   74篇
  2009年   72篇
  2008年   74篇
  2007年   63篇
  2006年   54篇
  2005年   34篇
  2004年   25篇
  2003年   20篇
  2002年   32篇
  2001年   8篇
  2000年   7篇
  1999年   13篇
  1998年   26篇
  1997年   15篇
  1996年   16篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1747条查询结果,搜索用时 0 毫秒
91.
The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.  相似文献   
92.
Chromatin organization is developmentally regulated by epigenetic changes mediated by histone-modifying enzymes and chromatin remodeling complexes. In Drosophila melanogaster, the Tip60 chromatin remodeling complex (dTip60) play roles in chromatin regulation, which are shared by evolutionarily-related complexes identified in animal and plants. Recently, it was found that most subunits previously assigned to the dTip60 complex are shared by two related complexes, DOM-A.C and DOM-B.C, defined by DOM-A and DOM-B isoforms, respectively. In this work, we combined classical genetics, cell biology, and reverse genetics approaches to further investigate the biological roles played during Drosophila melanogaster development by a number of subunits originally assigned to the dTip60 complex.  相似文献   
93.
The angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17. The affinity constant values, metal coordination geometry and complexes redox-potentials strongly depend, for both peptides, on the number of copper equivalents added. Confocal laser scanning microscope analysis on neuroblastoma cells showed that in the presence of one equivalent of copper ion, the free amino Ang1-17 increases cellular copper uptake while the acetylated AcAng1-17 strongly decreases the intracellular metal level. The activity of peptides was also compared to that of the protein normally present in the plasma (wtANG) as well as to the recombinant form (rANG) most commonly used in literature experiments. The two protein isoforms bind copper ions but with a different coordination environment. Confocal laser scanning microscope data showed that the wtANG induces a strong increase in intracellular copper compared to control while the rANG decreases the copper signal inside cells. These data demonstrate the relevance of copper complexes’ geometry to modulate peptides’ activity and show that wtANG, normally present in the plasma, can affect cellular copper uptake.  相似文献   
94.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
95.
Storage hydropower plants, which are an important component of energy production in Switzerland, can lead to hydro- and thermopeaking, affecting river habitats and organisms. In this study, we developed an approach for integrating water temperature simulations into a habitat model to assess the impact of both hydro- and thermopeaking on the availability of suitable fish habitats. We focused on the habitat requirements of juvenile brown trout (Salmo trutta) in a semi-natural braided floodplain along the Moesa River (Southern Switzerland) in early summer. First, we defined different scenarios (with and without hydropeaking) based on the local hydrological and meteorological conditions. Second, we used a two-dimensional depth-averaged hydro- and thermodynamic model to simulate the spatial distributions of water depth, flow velocity, and water temperature. Third, we applied generalized preference curves for juvenile brown trout to identify hydraulically suitable habitats, and developed a new index to assess the availability of thermally suitable habitats. Finally, we quantified the extent to which hydraulically and thermally suitable habitats overlap in space and time. During both base and peak flow phases, most of the hydraulically and thermally suitable habitats are located in the side channels. High flow conditions combined with strong cold-thermopeaking lead to a higher thermal heterogeneity. However, disconnected habitats originate in the dewatering zone, increasing the risk of stranding as well as thermal stress. By helping to better understand the effects of thermopeaking on the availability of fish habitats, our approach could contribute to the design and evaluation of ecological restoration in hydropeaking rivers.  相似文献   
96.
97.
The environmental performance of hydrogen production via indirect gasification of poplar biomass was evaluated following a Life Cycle Assessment approach. Foreground data for the study were provided mainly from process simulation. The main subsystems and processes that contribute to the environmental impacts were identified. Thus, poplar production and direct emissions to air from the processing plant were found to be the main sources of environmental impact. Furthermore, a favourable (positive) life-cycle energy balance was estimated for the gasification-based system.  相似文献   
98.
99.
ABSTRACT

A convergence enhancement technique known as the integral balance approach is employed in combination with the Generalized Integral Transform Technique (GITT) for solving diffusion or convection-diffusion problems in physical domains with subregions of markedly different materials properties and/or spatial scales. GITT is employed in the solution of the differential eigenvalue problem with space variable coefficients, by adopting simpler auxiliary eigenproblems for the eigenfunction representation. The examples provided deal with heat conduction in heterogeneous media and forced convection in a microchannel embedded in a substrate. The convergence characteristics of the proposed novel solution are critically compared against the conventional approach through integral transforms without the integral balance enhancement, with the aid of fully converged results from the available exact solutions.  相似文献   
100.
BACKGROUND: Variations in the contents of phytochemicals with biological activity in broccoli could originate as a result of genetic and environmental factors. An understanding of the effects of growth conditions on the bioactive compounds in broccoli is essential for improving its quality and nutritive value. Using salinity (40 mmol L?1 NaCl), and foliar sprayed compounds (methionine, tryptophan and chitosan) as different stress conditions, broccoli developed in soilless culture in the greenhouse was analysed for biologically active phytochemicals (glucosinolates, caffeoyl‐quinic, ferulic and sinapic derivatives and vitamin C). RESULTS: The application of elicitors during head formation could be beneficial for the enrichment in phytochemicals in broccoli. Management practices for increasing a given phytochemical (e.g., glucoraphanin or glucobrassicin) may be related to a decreased level of natural antioxidants (hydroxycinnamic acids). Growing broccoli hydroponically in the greenhouse in winter (Mediterranean climate) needs the supporting treatment of abiotic stress during development (i.e., NaCl, elicitors). CONCLUSION: The use of hydroponic growth conditions for broccoli and the application of stress factors (elicitors) at head induction and during development may serve the purpose of enhancing its nutritional quality to deliver a health‐promoting food. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号