In this paper, a novel pyramid coding based rate control scheme is proposed for video streaming applications constrained by a constant channel bandwidth. To achieve the target bit rate with the best quality, the initial quantization parameter (QP) is determined by the average spatio-temporal complexity of the sequence, its resolution and the target bit rate. Simple linear estimation models are then used to predict the number of bits that would be necessary to encode a frame for a given complexity and QP. The experimental results demonstrate that the proposed rate control scheme significantly outperforms the existing rate control scheme in the Joint Model (JM) reference software in terms of Peak Signal to Noise Ratio (PSNR) and consistent perceptual visual quality while achieving the target bit rate. Finally, the proposed scheme is validated through experimental evaluation over a miniature test-bed.
This paper proposes an experimental investigation and optimization of various machining parameters for the die-sinking electrical discharge machining (EDM) process using a multi-objective particle swarm (MOPSO) algorithm. A Box–Behnken design of response surface methodology has been adopted to estimate the effect of machining parameters on the responses. The responses used in the analysis are material removal rate, electrode wear ratio, surface roughness and radial overcut. The machining parameters considered in the study are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and tool material. Fifty four experimental runs are conducted using Inconel 718 super alloy as work piece material and the influence of parameters on each response is analysed. It is observed that tool material, discharge current and pulse-on-time have significant effect on machinability characteristics of Inconel 718. Finally, a novel MOPSO algorithm has been proposed for simultaneous optimization of multiple responses. Mutation operator, predominantly used in genetic algorithm, has been introduced in the MOPSO algorithm to avoid premature convergence. The Pareto-optimal solutions obtained through MOPSO have been ranked by the composite scores obtained through maximum deviation theory to avoid subjectiveness and impreciseness in the decision making. The analysis offers useful information for controlling the machining parameters to improve the accuracy of the EDMed components. 相似文献
In modern IP routers, Internet protocol (IP) lookup forms a bottleneck in packet forwarding because the lookup speed cannot catch up with the increase in link bandwidth. Ternary content-addressable memories (TCAMs) have emerged as viable devices for designing high-throughput forwarding engines on routers. Called ternary because they store don't-care states in addition to 0s and 1s, TCAMs search the data (IP address) in a single clock cycle. Because of this property, TCAMs are particularly attractive for packet forwarding and classifications. Despite these advantages, large TCAM arrays have high power consumption and lack scalable design schemes, which limit their use. We propose a two-level pipelined architecture that reduces power consumption through memory compaction and the selective enablement of only a portion of the TCAM array. We also introduce the idea of prefix aggregation and prefix expansion to reduce the number of routing-table entries in TCAMs for IP lookup. We also discuss an efficient incremental update scheme for the routing of prefixes and provide empirical equations for estimating memory requirements and proportional power consumption for the proposed architecture. 相似文献
The purpose of this paper is two folded. Firstly, the concept of mean potentiality approach (MPA) has been developed and an algorithm based on this new approach has been proposed to get a balanced solution of a fuzzy soft set based decision making problem. Secondly, a parameter reduction procedure based on relational algebra with the help of the balanced algorithm of mean potentiality approach has been used to reduce the choice parameter set in the parlance of fuzzy soft set theory and it is justified to the problems of diagnosis of a disease from the myriad of symptoms from medical science. Moreover the feasibility of this proposed method is demonstrated by comparing with Analytical Hierarchy Process (AHP), Naive Bayes classification method and Feng's method. 相似文献
A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman–Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement. 相似文献
The present study highlights application of Taguchi’s robust design coupled with fuzzy based desirability function approach for optimizing multiple bead geometry parameters of submerged arc weldment. Fuzzy inference system has been adapted to avoid uncertainly, imprecision and vagueness in experimentation as well as in data analysis by traditional Taguchi based optimization approach. Detailed methodology and unique features of the proposed method has been highlighted through a case study. The said approach can efficiently be used in off-line quality control of any production process as well as automation of the process. 相似文献
The irradiation effects of 6 MeV electrons on the electrical properties of Al/TiO2/n-Si metal-oxide-semiconductor capacitors have been investigated. Nine Al/TiO2/n-Si capacitors were fabricated using radio frequency magnetron sputtering and divided into three groups. Groups were irradiated with 6 MeV electrons at 10, 20, and 30 kGy doses, respectively, keeping the dose rate ∼1 kGy/min. The variations in the capacitance-voltage and leakage current-voltage characteristics, in addition to the electrical parameters, such as conductance (G/ω), flat-band voltage, interface trap density and the surface charge density with electron dose were studied. The Poole-Frenkel coefficient of the MOS capacitors was determined from current-voltage characteristics. Possible mechanisms for the enhanced leakage current in the electron irradiated MOS capacitors are discussed. 相似文献
The spectral photoresponse and the current-voltage (I–V) characteristics of the illuminated n-CdS electrode in 1 M Na2S, 1 M S and 1 M KOH electrolyte were measured. Both pressure-sintered and electro-deposited polycrystalline CdS electrodes were used in the study of their photoelectrochemical behaviour. The results indicate that the addition of a small amount of CdSe into the CdS electrode enhances the performance of the photoelectrochemical (PEC) cell. 相似文献