首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   68篇
  国内免费   8篇
电工技术   14篇
化学工业   418篇
金属工艺   24篇
机械仪表   13篇
建筑科学   5篇
能源动力   28篇
轻工业   8篇
水利工程   9篇
石油天然气   13篇
无线电   75篇
一般工业技术   235篇
冶金工业   17篇
原子能技术   8篇
自动化技术   140篇
  2024年   1篇
  2023年   11篇
  2022年   56篇
  2021年   84篇
  2020年   51篇
  2019年   42篇
  2018年   47篇
  2017年   43篇
  2016年   51篇
  2015年   31篇
  2014年   55篇
  2013年   82篇
  2012年   67篇
  2011年   71篇
  2010年   46篇
  2009年   50篇
  2008年   40篇
  2007年   35篇
  2006年   25篇
  2005年   28篇
  2004年   27篇
  2003年   12篇
  2002年   18篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1990年   1篇
排序方式: 共有1007条查询结果,搜索用时 15 毫秒
51.
52.
53.
High-temperature proton conductors based on acceptor-doped barium zirconate exhibit excellent chemical stability in atmospheres containing CO2 or H2O. However, due to their refractory nature, these conductors have a low grain growth rate, which negatively affects the overall electrical conductivity. A possible strategy for increasing the ionic conductivity of zirconates lies in the partial substitution of Zr-ions with other isovalent dopants. In this work, we carried out systematic studies of the crystal structure, microstructure, hydration capacity, transport, and thermal properties of BaZr0.8–xSnxSc0.2O3–δ (x = 0, 0.1, and 0.2). According to X-ray powder diffraction and scanning electron microscopy data, all studied ceramic samples have a cubic perovskite structure, whose average grain size decreases with tin doping. It is found that the composition with x = 0.1 exhibits the highest values in terms of total, ionic, grain, and grain-boundary conductivities. The complex analysis of the obtained data shows that a low-level substitution of Zr4+- with Sn4+-ions is a competent approach for designing new proton-conducting electrolytes attractive for high-temperature applications.  相似文献   
54.
Kinetic models were developed for the hydrolysis of O‐acetyl‐galactoglucomannan (GGM), a hemicellulose appearing in coniferous trees. Homogeneous and heterogeneous acid catalysts hydrolyze GGM at about 90°C to the monomeric sugars galactose, glucose, and mannose. In the presence of homogeneous catalysts, such as HCl, H2SO4, oxalic acid, and trifluoroacetic acid, the hydrolysis process shows a regular kinetic behavior, while a prominent autocatalytic effect was observed in the presence of heterogeneous cation‐exchange catalysts, Amberlyst 15 and Smopex 101. The kinetic models proposed were based on the reactivities of the nonhydrolyzed sugar units and the increase of the rate constant (for heterogeneous catalysts) as the reaction progresses and the degree of polymerization decreases. General kinetic models were derived and special cases of them were considered in detail, by deriving analytical solutions for product distributions. The kinetic parameters, describing the autocatalytic effect were determined by nonlinear regression analysis. The kinetic model described very well the overall kinetics, as well as the product distribution in the hydrolysis of water soluble GGM by homogeneous and heterogeneous catalysts. The modelling principles developed in the work can be in principle applied to hydrolysis of similar hemicelluloses as well as starch and cellulose. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1066–1077, 2014  相似文献   
55.
Mixtures of fatty acids and rosin acids are industrially important products utilized as a raw material for several purposes. Their thermal properties, especially cold stability and crystallization behavior is also important. Several fatty acid and rosin acid mixtures both from industrial products and from commercially available fatty and rosin acids were prepared and treated for 30 min at 80 °C under an inert atmosphere. Thereafter, the mixture was cooled to the desired temperature. Determination of the cloud point, chemical analysis of liquid and solid phase, thermal analysis by differential scanning calorimetry as well as morphology analysis by scanning electron microscopy were performed. The results revealed that crystallization was more rapid when it occurred at 10 °C compared to 25 °C. The crystal sizes increased with decreasing the crystallization temperature. Furthermore, crystals were of irregular shape and agglomerated when rapid cooling of the mixture occurred. Chemical analysis revealed that liquid phase was enriched with stearic acid, whereas crystals contained large amounts of abietic, dehydroabietic and linoleic acids. The cloud point of the mixtures increased with increasing amount of stearic and rosin acids. Dehydroabietic acid addition improved the cold stability of the synthetic fatty acid–rosin acids mixture.  相似文献   
56.
Fabrication of porous alginate hydrogels with a well‐controlled architecture useful for tissue engineering is still a challenge. Here, CaCO3‐based templating is utilized to design stable alginate gels with controlled pore dimensions in the range of 5–50 μm. The mechanism of pore formation is studied considering two factors affecting the pore size: i) osmotic pressure generated during the dissolution of sacrificial CaCO3 templates and ii) alginate gel network density. Osmotic pressure can achieve an upper limit of 100 MPa but does not affect the gel porosity. Additional osmotic pressure (range of kPa) induced by dextrans pre‐encapsulated into CaCO3 vaterite is also insufficient for pore enlargement. Pore stability depends merely on the gel network density and on the number of crosslinking calcium ions provided locally per unit time; pores are collapsed when template dissolution is too slow or if there is insufficient alginate concentration (below 2%). Young's modulus indicates the soft nature of the prepared hydrogels (tens of kPa) applicable as soft porous scaffolds with a tuned internal structure.  相似文献   
57.
The influence of different SPS-based methods, that is, conventional spark plasma sintering (SPS), flash SPS (FSPS), and reactive SPS (RSPS) on the properties of Al2O3/SiC composite was investigated. It was shown that the application of preliminary high energy ball milling of the powders significantly enhances the sinterability of the ceramics. It was also demonstrated that FSPS provides unique conditions for rapid, that is, less than a minute, consolidation of refractory ceramics. The Al2O3-20 wt% SiC composite produced by FSPS possesses the highest relative density (~99%), fracture toughness (7.5 MPa m1/2), hardness (20.3 GPa) and wear resistance among all ceramics produced by other SPS-based approaches with dwelling time 10 minutes. The RSPS ceramics hold the highest Young's modulus (390 GPa). Substitution of micron-sized Al2O3 particles by nano alumina does not lead to measurable enhancement of the mechanical properties.  相似文献   
58.
Distribution of different types of atherosclerotic lesions in the arterial wall is not diffuse, but is characterized by mosaicism. The causes of such distribution remain to be established. At the early stages of atherogenesis, low-density lipoprotein (LDL) particles and immune cells penetrate into the intimal layer of the arterial wall through the endothelium. In adult humans, the luminal surface of the arterial wall is a heterogeneous monolayer of cells with varying morphology including typical endothelial cells (ECs) and multinucleated variant endothelial cells (MVECs). We hypothesized that distribution of MVECs in the endothelial monolayer can be related to the distribution pattern of early atherosclerotic lesions. We obtained en face preparations of intact adult (22–59 years old) aortic wall sections that allowed us to study the endothelial monolayer and the subendothelial layer. We compared the distribution of MVECs in the endothelial monolayer with the localization of early atherosclerotic lesions in the subendothelial layer, which were characterized by lipid accumulation and immune cell recruitment. In primary culture, MVECs demonstrated increased phagocytic activity compared to mononuclear ECs. Moreover, we have shown that unaffected aortic intima contained associates formed as a result of aggregation and/or fusion of LDL particles that are non-randomly distributed. This indicated that MVECs may be involved in the accumulation of LDL in the subendothelial layer through increased transcytosis. Interaction of LDL with subendothelial cells of human aorta in primary culture increased their adhesive properties toward circulating immune cells. Study of unaffected aortic intima revealed non-random distribution of leukocytes in the subendothelial layer and increased localization of CD45+ leukocytes in the subendothelial layer adjacent to MVECs. Together, our observations indicate that MVECs may be responsible for the distribution of atherosclerotic lesions in the arterial wall by participating in LDL internalization and immune cell recruitment.  相似文献   
59.
MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.  相似文献   
60.
Patterned polydimethylsiloxane (PDMS) is an important structure for soft lithography. Various materials have been deployed as mold for patterning PDMS. Anodized nanotubular array has been sought after as cost-effective alternative for textured silicon. An array of TiO2 nanotubes with characteristic diameter ≈140 nm and the length of ≈1.5 microns, created by anodic oxidation of a titanium substrate, was used here as a template for soft PDMS molding. The optimal molding process was developed by a combination of silanization, use of solvent, application of a vacuum, and hydraulic pressing. The silanization was confirmed by Fourier transform infrared spectroscopy and contact angle measurements while the PDMS structure was examined by scanning electron microscope and energy dispersive X-ray spectroscopy. Hydraulic pressing significantly improved the infiltration of PDMS into the pores of nanotubular array resulting in formation of PDMS nanobumps after separation of the polymer from the template. Complete infiltration of PDMS precursor into the cavity of nanotubes was observed on the hydraulic-pressed sample without toluene impurities. The hydraulic-pressed samples exhibited higher adhesion strength than nonpressed ones. The adhesive strength was measured by a simple experimental arrangement, in which the PDMS layer was stuck on a vertical glass surface followed by pulling it downwards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号