首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   51篇
  国内免费   9篇
电工技术   17篇
综合类   3篇
化学工业   243篇
金属工艺   22篇
机械仪表   24篇
建筑科学   36篇
矿业工程   1篇
能源动力   56篇
轻工业   48篇
水利工程   6篇
石油天然气   4篇
无线电   65篇
一般工业技术   142篇
冶金工业   24篇
原子能技术   10篇
自动化技术   147篇
  2024年   5篇
  2023年   15篇
  2022年   33篇
  2021年   56篇
  2020年   61篇
  2019年   45篇
  2018年   86篇
  2017年   48篇
  2016年   47篇
  2015年   31篇
  2014年   60篇
  2013年   100篇
  2012年   60篇
  2011年   65篇
  2010年   44篇
  2009年   34篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有848条查询结果,搜索用时 0 毫秒
31.
32.
The thermomechanical behavior of micro/nano-alumina (Al2O3) ceramics reinforced with 1-5 wt.% of acid-treated oil fly ash (OFA) was investigated. Composites were sintered using spark plasma sintering (SPS) technique at a temperature of 1400°C by applying a constant uniaxial pressure of 50 MPa. It was evaluated that the fracture toughness of micro- and nanosized composites improved in contrast with the monolithic alumina. Highest fracture toughness value of 4.85 MPam1/2 was measured for the nanosized composite reinforced with 5 wt.% OFA. The thermal conductivity of the composites (nano-/microsized) decreased with the increase in temperature. However, the addition of OFA (1-5 wt.%) in nanosized alumina enhanced the thermal conductivity at an evaluated temperature. Furthermore, a minimum thermal expansion value of 6.17 ppm*K−1 was measured for nanosized Al2O3/5 wt.% OFA composite. Microstructural characterization of Al2O3-OFA composites was done by x-ray diffraction and Raman spectroscopy. Oil fly ash particles were seen to be well dispersed within the alumina matrix. Moreover, the comparative analysis of the nano-/microsized Al2O3/OFA composites shows that the mechanical and thermal properties were improved in nanosized alumina composites.  相似文献   
33.
The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2 h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands.  相似文献   
34.
ABSTRACT

Objective: We systematically reviewed available randomized clinical trials (RCTs) to elucidate the overall effects of synbiotic supplementation in patients with nonalcoholic fatty liver disease (NAFLD).

Methods: PubMed, Scopus, ISI Web of science and Google Scholar were searched up to December, 2017. All RCTs using synbiotic supplements to treat NAFLD included in this systematic review and meta-analysis. Mean Difference (MD) was pooled using a random-effects model.

Results: Eleven eligible databases from seven RCTs were identified for the present meta-analysis. Our results showed that synbiotic supplementation can decrease body weight, fasting blood sugar, insulin, low density lipoprotein cholesterol, total cholesterol, triglyceride, high-sensitivity C-reactive protein, tumor necrosis factor alpha, alanine transaminase and aspartate transaminase levels among patients with NAFLD. In contrast, synbiotic did not have favorable effects on body mass index (BMI), waist circumference, homeostasis model assessment for insulin resistance (HOMA-IR), and high density lipoprotein cholesterol (HDL) levels compared with the placebo group.

Conclusion: The current study revealed that synbiotic supplementation has favorable effect on inflammatory factors, liver enzymes and some anthropometric indices, lipid profiles and glucose homeostasis parameters in patients with NAFLD.  相似文献   
35.

This paper updates a method for generating small, accurate kinetic models for applications in computational fluid dynamics programs. This particular method first uses a time-integrated flux-based algorithm to generate the smallest possible skeletal model based on the detailed kinetic model. Then, it uses a multi-stage optimization process in which multiple runs of a genetic algorithm are used to optimize the rate constant parameters of the retained reactions. This optimization technique provides the user with the flexibility needed to balance the fidelity of the model with their time constraints. The updated method was applied to the reduction of a methane-air model under conditions meant to approximate the end of a compression stroke of an internal combustion engine. When compared to previous techniques, the results showed that this method could produce a more accurate model in considerably less time. The best model obtained in this study resulted in relative errors ranging from 0.22 to 1.14% on all six optimization targets. This reduced model was also able to adequately predict optimization targets for certain operating conditions, which were not included in the optimization process.

  相似文献   
36.
Due to their non-polluting nature and environment friendliness, Renewable Energies have gained great deal of attention and deserve a substantial body of both theoretical and empirical research. Amongst other factors, the low operational cost and simple maintenance procedures attributed the Oscillating Water Column (OWC) are perhaps the main reasons why this system is the most used concept for the ocean wave energy capture.In this paper, through extensive experimental research various geometrical designs of an OWC system is investigated and the optimized set up for the maximum energy harness is obtained.The initial chamber dimensions were 10 × 50 × 53 cm with the chamber being placed in an open channel with wave-simulating equipment with dimensions of 16 × 0.7 × .05 m. For various chamber geometries, with the aid of a air rotameter and a Pitot tube equipped with a digital manometer, the outlet air flow and velocity from the chamber was measured and registered.The measurements were then interpreted to provide design data for the optimal geometry of the chamber that may yield the maximum conversion of wave energy to useful energy.  相似文献   
37.
Solar energy is going to play a crucial role in the future energy scenario of the world that conducts interests to solar-to-hydrogen as a means of achieving a clean energy carrier. Hydrogen is a sustainable energy carrier, capable of substituting fossil fuels and decreasing carbon dioxide (CO2) emission to save the world from global warming. Hydrogen production from ubiquitous sustainable solar energy and an abundantly available water is an environmentally friendly solution for globally increasing energy demands and ensures long-term energy security. Among various solar hydrogen production routes, this study concentrates on solar thermolysis, solar thermal hydrogen via electrolysis, thermochemical water splitting, fossil fuels decarbonization, and photovoltaic-based hydrogen production with special focus on the concentrated photovoltaic (CPV) system. Energy management and thermodynamic analysis of CPV-based hydrogen production as the near-term sustainable option are developed. The capability of three electrolysis systems including alkaline water electrolysis (AWE), polymer electrolyte membrane electrolysis, and solid oxide electrolysis for coupling to solar systems for H2 production is discussed. Since the cost of solar hydrogen has a very large range because of the various employed technologies, the challenges, pros and cons of the different methods, and the commercialization processes are also noticed. Among three electrolysis technologies considered for postulated solar hydrogen economy, AWE is found the most mature to integrate with the CPV system. Although substantial progresses have been made in solar hydrogen production technologies, the review indicates that these systems require further maturation to emulate the produced grid-based hydrogen.  相似文献   
38.
SiC coatings were generated on graphite using slurry sintering (SS) and pack cementation (PC). The samples’ ablation features were assessed by an oxyacetylene torch. The rates of mass ablation of the PC–SiC and SS–SiC coatings were approximated 2.17?×?10?3 and 9.52?×?10?3 g s?1, respectively, decreased by 84.1 and 29.6% compared to the uncoated samples. It was mainly attributed to the formation of a SiO2 layer on the surface. The continuous SiO2 molten film formed via the PC–SiC oxidation generates a sealing mechanism which can be an obstacle against the oxygen diffusion and hinder more ablation. This is while discontinuous SiO2 film formed from the thin SS–SiC cannot protect the graphite effectively. The non-isothermal oxidation test shows that without the SiC coating, the sample weight is lost largely from 25 to 1500 °C, and its weight loss was 2.2% after the TGA. However, after coating, the samples possessed excellent oxidation protection and weight losses of SS–SiC and PC–SiC coatings are down to 1.3 and 0.6%, respectively. The more oxidation of the graphite substrate occurred due to the formation of macrocracks in the coating during the TGA and also the formation of holes on SiO2 glass layer owing to release of CO or CO2.  相似文献   
39.
40.
Fluid flow manifold plays a significant role in the performance of a fuel cell stack because it affects the pressure drop, reactants distribution uniformity and flow losses, significantly. In this study, the flow distribution and the pressure drop in the gas channels including the inlet and outlet manifolds, with U- and Z-type arrangements, of a 10-cell PEM fuel cell stack are analyzed at anode and cathode sides and the effects of inlet reactant stoichiometry and manifold hydraulic diameter on the pressure drop are investigated. Furthermore, the effect of relative humidity of oxidants on the pressure drop of cathode are investigated. The results indicate that increase of the manifold hydraulic diameter leads to decrease of the pressure drop and a more uniform flow distribution at the cathode side when air is used as oxidant while utilization of humidified oxidant results in increase of pressure drop. It is demonstrated that for the inlet stoichiometry of 2 and U type manifold arrangement when the relative humidity increases from 25% to 75%, the pressure drop increases by 60.12% and 116.14% for oxygen and air, respectively. It is concluded that there is not a significant difference in pressure drop of U- and Z-type arrangements when oxygen is used as oxidant. When air is used as oxidant, the effect of manifold type arrangement is more significant than other cases, and increase of the stoichiometry ratio from 1.25 to 2.5 leads to increase of pressure drop by 527.3%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号