首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   10篇
  国内免费   1篇
电工技术   5篇
综合类   24篇
化学工业   46篇
金属工艺   11篇
机械仪表   23篇
建筑科学   16篇
能源动力   20篇
轻工业   16篇
无线电   40篇
一般工业技术   39篇
冶金工业   8篇
原子能技术   2篇
自动化技术   65篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   12篇
  2016年   8篇
  2015年   8篇
  2014年   11篇
  2013年   22篇
  2012年   22篇
  2011年   24篇
  2010年   20篇
  2009年   26篇
  2008年   17篇
  2007年   17篇
  2006年   11篇
  2005年   5篇
  2004年   11篇
  2003年   25篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
111.
Collection of accurate, complete, and reliable field data is not only essential for active management of construction projects involving various tasks, such as material tracking, progress monitoring, and quality assurance, but also for facility and infrastructure management during the service lives of facilities and infrastructure systems. Limitations of current manual data collection approaches in terms of speed, completeness, and accuracy render these approaches ineffective for decision support in highly dynamic environments, such as construction and facility operations. Hence, a need exists to leverage the advancements in automated field data capture technologies to support decisions during construction and facility operations. These technologies can be used not only for acquiring data about the various operations being carried out at construction and facility sites but also for gathering information about the context surrounding these operations and monitoring the workflow of activities during these operations. With this, it is possible for project and facility managers to better understand the effect of environmental conditions on construction and facility operations and also to identify inefficient processes in these operations. This paper presents an overview of the various applications of automated field data capture technologies in construction and facility fieldwork. These technologies include image capture technologies, such as laser scanners and video cameras; automated identification technologies, such as barcodes and Radio Frequency Identification (RFID) tags; tracking technologies, such as Global Positioning System (GPS) and wireless local area network (LAN); and process monitoring technologies, such as on-board instruments (OBI). The authors observe that although applications exist for capturing construction and facility fieldwork data, these technologies have been underutilized for capturing the context at the fieldwork sites as well as for monitoring the workflow of construction and facility operations.  相似文献   
112.
Engin Burgaz 《Polymer》2011,52(22):5118-5126
Poly(ethylene-oxide) PEO/clay/silica nanocomposites were prepared via solution intercalation by exploiting phase separation based on the bridging of particles by polymer chains. The intercalated morphology of nanocomposites was confirmed by XRD. Vibrational modes of the ether oxygen of PEO in the hybrids are shifted due to the coordination of the ether oxygen with the sodium cations of clay and the H-bonding interactions of the ether oxygen with the surface silanols of hydrophilic fumed silica. Based on SEM, the overall density of nanoparticle aggregates in the interspherulitic region was observed to be higher compared to that inside spherulites. PEO/clay/silica hybrids show significant property improvements compared to PEO/clay hybrids and pure PEO. The system containing 10 wt.% clay and 5 wt.% silica has substantially higher modulus and much lower crystallinity compared to the 15 wt.% clay system. The physics behind the reinforcement effect and the reduction of crystallinity as a function of fumed silica loading is discussed based on the morphological characterization of the hybrids. Lastly, PEO/clay/silica hybrids display good thermal stability and are much stiffer compared to pure PEO and PEO/clay nanocomposites.  相似文献   
113.
The InxGa1?xN epitaxial layers, with indium (x) concentration changes between 0.16 and 1.00 (InN), were grown on GaN template/(0001) Al2O3 substrate by metal organic chemical vapour deposition. The indium content (x), lattice parameters and strain values in the InGaN layers were calculated from the reciprocal lattice mapping around symmetric (0002) and asymmetric (10–15) reflection of the GaN and InGaN layers. The characteristics of mosaic structures, such as lateral and vertical coherence lengths, tilt and twist angle and heterogeneous strain and dislocation densities (edge and screw dislocations) of the InGaN epilayers and GaN template layers were investigated by using high-resolution X-ray diffraction (HR-XRD) measurements. With a combination of Williamson–Hall (W-H) measurements and the fitting of twist angles, it was found that the indium content in the InGaN epilayers did not strongly effect the mosaic structures’ parameters, lateral and vertical coherence lengths, tilt and twist angle, or heterogeneous strain of the InGaN epilayers.  相似文献   
114.
High-resistive GaN (>108 Ω cm) layers have been grown with different buffer structures on 6H-SiC substrate using metalorganic chemical vapor deposition reactor. Different combination of the GaN/AlN super lattice, low temperature AlN, high temperature AlN and AlxGa1?xN (x ≈ 0.67) layers were used in the buffer structures. The growth parameters of the buffer layers were optimized for obtaining a high-resistive GaN epilayer. The mosaic structure parameters, such as lateral and vertical coherence lengths, tilt and twist angle (and heterogeneous strain), and dislocation densities (edge and screw dislocations) of the high-resistive GaN epilayers have been investigated using x-ray diffraction measurements. In addition, the residual stress behaviors in the high-resistive GaN epilayers were determined using both x-ray diffraction and Raman measurements. It was found that the buffer structures between the HR-GaN and SiC substrate have been found to have significant effect on the surface morphology and the mosaic structures parameters. On the other hand, both XRD and Raman results confirmed that there is low residual stress in the high-resistive GaN epilayers grown on different buffer structures.  相似文献   
115.
Compressive strength is the most widely used design parameter in the construction industry and in rock engineering. For example, Bieniawski [Bieniawski, Z. T., Estimating the strength of rock materials, Is. J. S. Afr. Inst. Min. Metall., 1974, 74, 312–320.] reported that mining engineers request the uniaxial compressive strength (UCS) more often than any other rock property. However, standards set for specimen preparation are very demanding. Therefore it is quite difficult and sometimes impossible to fulfill these requirements using weak rocks and especially shales. This paper evaluates the use of the slake durability and Shore hardness tests to estimate UCS, based on laboratory correlations performed for this study and others and based on analysis of structural and physical material properties affecting both strength and durability.  相似文献   
116.
This work extends the applicability of variable structure observers designed for nonlinear systems in two ways. First, it is proved that these observers using a boundary-layer scheme can be applied to system models described by Ito differential equations, resulting in almost sure and mean square exponential estimation error. Second, the use of variable structure observers is extended to nonlinear measurement models containing disturbance effects. Also, a novel approach for obtaining the required parameters in the observer design is provided. Finally, two examples are given to illustrate the application and favorable convergence properties of these generalizations.  相似文献   
117.
A novel circulating jet loop bioreactor adapted for organic matter oxidation has been designed and constructed. In this study, the input was leachate samples collected from Kemerburgaz Odayeri waste landfill site located on the European side of Istanbul. Controlling the jet loop bioreactor to realize high rates of purification depends on maintaining the appropriate loadings and operating conditions. This requires collecting various system data to estimate the dynamics of the system satisfactorily with the aim of keeping certain parameters within the specified range. The differential transform method (DTM) based solution of the state equations reveals the current state of the process so that any deviation in the system parameters can be immediately detected and regulated accordingly. The respirometric method for kinetic parameter calculations for biodegradation has been used for some time. In many studies, the respirometer was designed separately, usually in bench-scale. However, when a separate respirometer is used, the scale effect and parameters that affect the hydrodynamic structure of the system should be taken into consideration. In this study, therefore, the jet loop reactor itself was used as a respirometer. Thus, the kinetic parameters found reflecting the characteristics of microorganisms used for biodegradation would be more realistic. If the main reactor, here the jet loop reactor, would be used as the respirometer, the kinetic parameter changes can easily be monitored in the long run. Using the bioreactor as a respirometer, the most important kinetic parameters, Ks, kd and micromax were found to be 11,000 mg L(-1), 0.019 day(-1), and 0.21 day(-1), respectively. The stoichiometric coefficient, Y, was found to be 0.28 gr gr(-1) for the present system.  相似文献   
118.
This paper presents a technique for assessing the volumetric errors on a five-axis machine tool for motion involving two linear axes and one rotary axis at selected feed rates using data from two sources. The first source of data is obtained through a programmed end point constraint procedure with measurement of the 3D volumetric positioning errors between a point on the tool holder and another fixed to the machine table reference frame. The tests involve maintaining the nominal coincidence of these two points whilst exercising the three axes. The second source of data is the position feedback signal from the encoder provided by the machine controller. Tests were carried out at low and high feed rates to evaluate the effect of geometric and dynamic errors. Polynomial functions are used to represent and then predict the geometric errors. The predicted geometric errors are then added to the dynamic errors provided by the servo errors from position feedback signals and propagated to the tool centre point and are compared with the measured volumetric errors. It shows that the influence of the geometric errors are dominant at low feed, whereas the effects of the servo errors of the linear axes become dominant as the feed increases, reaching 80% of the total error at a feed of 10,000 mm/min.  相似文献   
119.
The residential vegetation features in urban landscapes play an important role as indicators regarding urban biodiversity potential and cultural changing. They also include ornamental resources in the context to landscape appreciation for human environment. Therefore, this paper provides quantitative information on the distribution of plant species in urban residential landscape areas of Trabzon city (Turkey). In a total of 218 sampled areas, 274 plants species belonging to 70 families were surveyed with respect to residential use types of the city. The study results showed that among the species recorded in five residential type (traditional housing, detached housing, villa, apartment blocks and sites, mass housing for employees), non-native taxa frequency of a total species are much and dominantly represent residential landscape structure. Additionally, the species richness and diversity is positively related to new urban development areas. But, it was clearly determined that the vegetation structure has tended to ornamental purposes different from traditional residential gardens including fruit and other benefiting species. Consequently, it can be evidence that the residential vegetation is ornamental plant resources to urban biodiversity and that the distribution of the species in urban landscapes follows necessities of city and human quality.  相似文献   
120.
Torsion of structural members and the behavior of steel fiber reinforced concrete became the area of interest of many researchers in the past and it is still newsworthy. In this study, 12 reinforced concrete (R/C) beams with Steel Fiber Reinforced Concrete (SFRC) were tested to observe the failure under torsional moments. The volumetric steel fiber content, fiber aspect ratio, and the longitudinal reinforcement were the variables of the investigation. Unit torsional angle of twist versus torsional moment (torque) response of each specimen was monitored during the experiments, and the effect of above variables on this response was critically investigated. It was observed that not only the torque capacity of R/C beam is modified by the addition of Steel Fiber Reinforcement (SFR) but also the energy absorption capacity is significantly affected by the SFR addition. Besides, an empirical equation relating the torque to twist for SFRC beams is proposed and tested against the test data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号