首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
综合类   1篇
化学工业   4篇
金属工艺   2篇
机械仪表   1篇
建筑科学   1篇
能源动力   3篇
水利工程   1篇
无线电   1篇
一般工业技术   13篇
冶金工业   4篇
自动化技术   54篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
71.
X-machines were proposed by Holcombe as a possible specification language and since then a number of further investigations have demonstrated that the model is intuitive and easy to use. In particular, stream X-machines (SXM), a particular class of X-machines, have been found to be extremely useful in practice. Furthermore, a method of testing systems specified as SXMs exists and is proved to detect all faults of the implementation provided that the system meets certain “design for test conditions”. Recently, a system of communicating SXMs was introduced as a means of modelling parallel processing. This paper proves that each communicating machine component can be transformed in a straightforward manner so that the entire system will behave like a single stream X-machine - the equivalent SXM of the system. The paper goes on to investigate the applicability of the SXM testing method to a system of communicating SXMs and identifies a class of communicating SXMs for which the equivalent SXM of the system meets the “design for test conditions”. Received November 1999 / Accepted in revised form June 2001  相似文献   
72.
73.
The general context of the development of out-of-autoclave processes in the aeronautics industry raises the question of the possible links between these new processes and impact behaviour. In this study, a Taguchi table was used in a design of experiment approach to establish possible links. The study focused on the liquid resin infusion process applied to laminates made with stitched or unstitched quadri-axial carbon Non-Crimp Fabric (NCF). On the basis of previous studies and an analysis of the literature, five process parameters were selected (stitching, curing temperature, preform position, number of highly porous media, vacuum level). The impact energy was set at 35?J in order to obtain enough residual dent depth. The parameters analysed during and after impact were: maximum displacement of the impactor, energy absorbed, permanent indentation depth, and delaminated surface. Then, compression after impact tests were performed and the corresponding average stress was measured. The interactions found by statistical analysis show a very high sensitivity to stitching, which was, of course, expected. A very significant influence of curing temperature and a significant influence of preform position were also found on the permanent indentation depth and a physical explanation is provided. Globally, it was demonstrated that the resin infusion process itself did not influence the impact behaviour.  相似文献   
74.
One of the great benefits of using a stream X-machine to specify a system is its associated testing method. Under certain design for test conditions, this method produces a test suite that can determine the correctness of the implementation under test (IUT), provided that the basic components of the stream X-machine model have been correctly implemented. However, such an approach implies that each component can be tested in isolation from the rest of the system. This is a limitation that, in practice, can be resolved by developing stubs and drivers. However, this adds complexity to the testing process and, furthermore, these new pieces of software can introduce faults that can invalidate the theoretical results of the aforementioned testing method. This paper extends the approach by allowing component testing to be performed in parallel with integration testing, while still guaranteeing the IUT correctness under the given design for test conditions. It also shows how the integration test suite, produced in previous publications, can be reduced.  相似文献   
75.
76.
When describing robot motion with dynamic movement primitives (DMPs), goal (trajectory endpoint), shape and temporal scaling parameters are used. In reinforcement learning with DMPs, usually goals and temporal scaling parameters are predefined and only the weights for shaping a DMP are learned. Many tasks, however, exist where the best goal position is not a priori known, requiring to learn it. Thus, here we specifically address the question of how to simultaneously combine goal and shape parameter learning. This is a difficult problem because learning of both parameters could easily interfere in a destructive way. We apply value function approximation techniques for goal learning and direct policy search methods for shape learning. Specifically, we use “policy improvement with path integrals” and “natural actor critic” for the policy search. We solve a learning-to-pour-liquid task in simulations as well as using a Pa10 robot arm. Results for learning from scratch, learning initialized by human demonstration, as well as for modifying the tool for the learned DMPs are presented. We observe that the combination of goal and shape learning is stable and robust within large parameter regimes. Learning converges quickly even in the presence of disturbances, which makes this combined method suitable for robotic applications.  相似文献   
77.
78.
To behave properly in an unknown environment, animals or robots must distinguish external from self-generated stimuli on their sensors. The biologically inspired concepts of efference copy and internal model have been successfully applied to a number of robot control problems. Here we present an application of this for our dynamic walking robot RunBot. We use efference copies of the motor commands with a simple forward internal model to predict the expected self-generated acceleration during walking. The difference to the actually measured acceleration is then used to stabilize the walking on terrains with changing slopes through its upper body component controller. As a consequence, the controller drives the upper body component (UBC) to lean forwards/backwards as soon as an error occurs resulting in dynamical stable walking. We have evaluated the performance of the system on four different track configurations. Furthermore we believe that the experimental studies pursued here will sharpen our understanding of how the efference copies influence dynamic locomotion control to the benefit of modern neural control strategies in robots.  相似文献   
79.
Today, the identification of material model parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results.  相似文献   
80.
In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and correlation-based (Hebbian) learning related? and How do the different models correspond to possibly underlying biological mechanisms of synaptic plasticity? We first compare the different models in an open-loop condition, where behavioral feedback does not alter the learning. Here we observe that reward-based and correlation-based learning are indeed very similar. Machine control is then used to introduce the problem of closed-loop control (e.g., actor-critic architectures). Here the problem of evaluative (rewards) versus nonevaluative (correlations) feedback from the environment will be discussed, showing that both learning approaches are fundamentally different in the closed-loop condition. In trying to answer the second question, we compare neuronal versions of the different learning architectures to the anatomy of the involved brain structures (basal-ganglia, thalamus, and cortex) and the molecular biophysics of glutamatergic and dopaminergic synapses. Finally, we discuss the different algorithms used to model STDP and compare them to reward-based learning rules. Certain similarities are found in spite of the strongly different timescales. Here we focus on the biophysics of the different calcium-release mechanisms known to be involved in STDP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号