首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2426篇
  免费   46篇
  国内免费   2篇
电工技术   40篇
综合类   24篇
化学工业   487篇
金属工艺   38篇
机械仪表   46篇
建筑科学   79篇
矿业工程   16篇
能源动力   38篇
轻工业   183篇
水利工程   27篇
石油天然气   5篇
无线电   172篇
一般工业技术   305篇
冶金工业   638篇
原子能技术   37篇
自动化技术   339篇
  2021年   27篇
  2020年   24篇
  2019年   31篇
  2017年   24篇
  2016年   44篇
  2015年   39篇
  2014年   32篇
  2013年   127篇
  2012年   69篇
  2011年   87篇
  2010年   85篇
  2009年   83篇
  2008年   94篇
  2007年   91篇
  2006年   79篇
  2005年   92篇
  2004年   67篇
  2003年   44篇
  2002年   63篇
  2001年   42篇
  2000年   28篇
  1999年   35篇
  1998年   50篇
  1997年   32篇
  1996年   43篇
  1995年   39篇
  1994年   32篇
  1993年   39篇
  1992年   39篇
  1991年   23篇
  1990年   37篇
  1989年   39篇
  1988年   26篇
  1987年   24篇
  1986年   39篇
  1985年   47篇
  1984年   52篇
  1983年   43篇
  1982年   53篇
  1981年   25篇
  1980年   35篇
  1979年   32篇
  1978年   30篇
  1977年   40篇
  1976年   38篇
  1975年   37篇
  1974年   29篇
  1973年   27篇
  1972年   24篇
  1969年   22篇
排序方式: 共有2474条查询结果,搜索用时 15 毫秒
21.
Low-energy electron-enhanced etching of HgCdTe   总被引:3,自引:0,他引:3  
Low-energy electron-enhanced etching (LE4) is applied to HgCdTe to eliminate ion-induced surface damage. First, LE4 results for patterned samples are illustrated. The LE4 mechanism is understood from a mechanistic study in terms of three etch variables: direct current (DC) bias, gas composition, and sample temperature. For this paper, the effects of DC bias (electron energy) and gas composition (CH4 concentration) are summarized qualitatively, followed by quantitative evidence. Etch rate, the amount of polymer, surface stoichiometry, and surface roughness have specific relations with each etch variable under competition between pure LE4 and polymer deposition.  相似文献   
22.
High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2–5)×10−3 and μτh≈(3–5)×10−5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ∼3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.  相似文献   
23.
We compare two source formulations for the electrocardiographic forward problem in consideration of their implications for regularizing the ill-posed inverse problem. The established epicardial potential source model is compared with a bidomain-theory-based transmembrane potential source formulation. The epicardial source approach is extended to the whole heart surface including the endocardial surfaces. We introduce the concept of the numerical null and signal space to draw attention to the problems associated with the nonuniqueness of the inverse solution and show that reconstruction of null-space components is an important issue for physiologically meaningful inverse solutions. Both formulations were tested with simulated data generated with an anisotropic heart model and with clinically measured data of two patients. A linear and a recently proposed quasi-linear inverse algorithm were applied for reconstructions of the epicardial and transmembrane potential, respectively. A direct comparison of both formulations was performed in terms of computed activation times. We found the transmembrane potential-based formulation is a more promising source formulation as stronger regularization by incorporation of biophysical a priori information is permitted.  相似文献   
24.
The 300 mm wafer copper electrochemical deposition (ECD) process for dual damascene metallization of semiconductor advanced interconnects is critically reviewed and the breakthroughs that enable further scaling of this process are examined. Special emphasis is placed on analyzing the critical issues, such as barrier/seed options, terminal effect and future plating prospects for this technology. The smallest plateable feature size values are estimated for different metallization integration schemes, such as conventional Physical Vapor Deposited (PVD) TaN/Ta/Cu, hybrid RuTa/Cu, CuMn (8%) self-forming barrier/seed, and Plasma-Enhanced Atomic Layer Deposition (PEALD) Ru, limiting the allowed maximum sheet resistance to 14 Ohms/sq for the Cu-based seeds and the effective maximum filling aspect ratio to 5-6.  相似文献   
25.
A unique test structure based on a metal-insulator-semiconductor planar capacitor (Pcap) design was used to investigate several aspects of metal barrier-induced low-k damage. A special term called Effective Damage Thickness was introduced to describe the degree of damage. Ta(N) barrier was deposited on various dielectric films with porosity up to 32%. It has been found that the Effective Damage Thickness increases as the porosity increases. The damage is influenced more by the porosity of low-k films than the film density. Furthermore, the damage was modulated by Ta(N) deposition conditions. More damage was observed when higher target and/or substrate bias power was used, suggesting that the ion energy of the barrier material plays an important role in the low-k damage mechanism. A same degree of damage was observed for Ta barrier as for Ta(N), suggesting that Ta(N) deposition-induced low-k damage was primarily caused by Ta ions not nitrogen. Impact of Ru(Ta) and Cu(Mn) self forming barrier on low-k damage was also investigated. Among all the barriers studied in this work, the Ta-based barriers caused the most damage while the Cu(Mn) self forming barrier had the least damage to the low-k. The atomic masses for Ta, Ru, and Cu are 181, 101, and 64, respectively, corresponding with the observed degree of damage in the low-k material.  相似文献   
26.
27.
Journal of Signal Processing Systems - This paper presents an efficient VLSI architecture of the 2-D wavelet transform for the adaptive directional lifting (ADL) scheme in image coding. To avoid...  相似文献   
28.
The detection of gas species with high sensitivity is a significant task for fundamental sciences as well as for industrial applications. Similarly, the ongoing trend for device miniaturization brings new challenges for advanced fabrication including on‐demand functionality tuning. Following this motivation, here the additive, direct‐write fabrication of freestanding 3D nanoarchitectures is introduced, which can be brought into mechanical resonance via electric AC fields. Specifically, this study focuses on the 3D nanostructure synthesis, the subsequent determination of Young's modulus, and demonstrates a postgrowth procedure, which can precisely tune the material modulus. As‐fabricated resonators reveal a Young's modulus of 9–13 GPa, which can be increased by a factor greater than 5. Next, the electric readout of the resonance behavior is demonstrated via electric current measurement as an essential element for the resonance sensor applications. Finally, the implications of gas‐physisorption and gas‐chemisorption on the resonance frequencies are studied, representing a proof‐of‐principle for sensing applications by the here presented approach.  相似文献   
29.
Offshore wind simulations were performed with the Weather Research and Forecasting (WRF) model driven by three different sea surface temperature (SST) datasets for Japanese coastal waters to investigate the effect of the SST accuracies on offshore wind simulations. First, the National Centers for Environmental Prediction Final analysis (FNL) (1° × 1° grid resolution) and the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) (0.05° × 0.05° grid resolution) datasets were compared with in situ measurements. The results show a decrease in accuracy of these datasets toward the coast from the open ocean. Aiming at an improved accuracy of SST data, we developed a new high‐resolution SST dataset (0.02° × 0.02° grid resolution). The new dataset referred to as MOSST is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) product, provided by the Japan Aerospace Exploration Agency (JAXA). MOSST was confirmed to be more accurate than FNL and OSTIA for the coastal waters. Then, WRF simulations were carried out for 1 year with a 2 km grid resolution and by using the FNL, OSTIA and MOSST datasets. The use of the OSTIA dataset for a WRF simulation was found to improve the accuracy when compared with the FNL dataset, and further improvement was obtained when the MOSST dataset was applied. The sensitivity of wind speed and wind energy density to SST is also discussed. We conclude that the use of an accurate SST is a key factor not only for realistic offshore wind simulations near the surface but also for accurate wind resource assessments at the hub height of wind turbines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
30.
To elucidate the various mechanisms by which pulmonary mechanics affect the distribution of gas species throughout the lungs, a multicompartment model relating pressure differences, flows, volumes, and gas species concentrations has been developed. The alveolar regions of the model are nonlinearly elastic and the pressure-flow relation of their associated small airways is volume dependent. Various combinations of parameter values were chosen, including cases in which the model was mechanically uniform (normal) and nonuniform (obstructive). Computer solutions of model equations were obtained for both piecewise-exponential and sinusoidal transpulmonary pressure inputs. Clinical measures of mechanical uniformity and gas concentration homogeneity were evaluated along with unobservable indexes. Results indicate how the distribution of mechanical variables affects the distribution of gas species concentration within the lungs. For the nonuniform (obstructive) model, the gas is distributed more inhomogeneously at higher frequencies and lower lung volumes. The distribution of initial dead space gas to the compartments as well as pendelluft tend to decrease this inhomogeneity. Dynamic compliance for the non-uniform model was frequency dependent at each of the three volume operating points investigated, whereas the semilog nitrogen washout curve was essentially linear for some frequencies and volumes while nonlinear for others. Consequently, inferences about distributions of mechanical parameters and intrapulmonary gas may require that clinical measurements be obtained together at several frequencies and volume operating points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号