首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2587篇
  免费   56篇
  国内免费   7篇
电工技术   52篇
综合类   1篇
化学工业   597篇
金属工艺   51篇
机械仪表   56篇
建筑科学   137篇
矿业工程   21篇
能源动力   60篇
轻工业   220篇
水利工程   8篇
石油天然气   7篇
武器工业   1篇
无线电   185篇
一般工业技术   393篇
冶金工业   494篇
原子能技术   28篇
自动化技术   339篇
  2022年   20篇
  2021年   37篇
  2019年   30篇
  2018年   51篇
  2017年   38篇
  2016年   39篇
  2015年   36篇
  2014年   46篇
  2013年   175篇
  2012年   83篇
  2011年   107篇
  2010年   92篇
  2009年   97篇
  2008年   98篇
  2007年   81篇
  2006年   91篇
  2005年   69篇
  2004年   49篇
  2003年   39篇
  2002年   59篇
  2001年   33篇
  2000年   45篇
  1999年   40篇
  1998年   83篇
  1997年   53篇
  1996年   44篇
  1995年   34篇
  1994年   46篇
  1993年   39篇
  1992年   35篇
  1991年   28篇
  1990年   22篇
  1989年   26篇
  1988年   25篇
  1986年   27篇
  1985年   36篇
  1984年   49篇
  1983年   38篇
  1982年   22篇
  1981年   46篇
  1980年   44篇
  1979年   42篇
  1978年   31篇
  1977年   30篇
  1976年   39篇
  1975年   24篇
  1974年   31篇
  1973年   27篇
  1972年   20篇
  1970年   27篇
排序方式: 共有2650条查询结果,搜索用时 171 毫秒
71.
72.
Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3′ UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2.  相似文献   
73.
In the present study, we studied the effect of apolipoprotein A-1 (APOA1) on the spatial and molecular characteristics of bone marrow adipocytes, using well-characterized ApoA1 knockout mice. APOA1 is a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, and thus HDL; our recent work showed that deficiency of APOA1 increases bone marrow adiposity in mice. We found that ApoA1 deficient mice have greatly elevated adipocytes within their bone marrow compared to wild type counterparts. Morphologically, the increased adipocytes were similar to white adipocytes, and displayed proximal tibial-end localization. Marrow adipocytes from wild type mice were significantly fewer and did not display a bone-end distribution pattern. The mRNA levels of the brown/beige adipocyte-specific markers Ucp1, Dio2, Pat2, and Pgc1a; and the expression of leptin were greatly reduced in the ApoA1 knock-out in comparison to the wild-type mice. In the knock-out mice, adiponectin was remarkably elevated. In keeping with the close ties of hematopoietic stem cells and marrow adipocytes, using flow cytometry we found that the elevated adiposity in the ApoA1 knockout mice is associated with a significant reduction in the compartments of hematopoietic stem cells and common myeloid, but not of the common lymphoid, progenitors. Moreover, the ‘beiging’-related marker osteopontin and the angiogenic factor VEGF were also reduced in the ApoA1 knock-out mice, further supporting the notion that APOA1—and most probably HDL-C—regulate bone marrow microenvironment, favoring beige/brown adipocyte characteristics.  相似文献   
74.
Bromide electrolysis was carried out on laboratory-scale cells in the range of 1–1,005 mg [Br] dm−3 using boron-doped diamond (BDD) anodes. These studies were part of fundamental research activities on drinking water electrolysis for disinfection. Synthetic water systems were mostly used in the experiments, which varied the temperature between 5 and 30 °C, the current density between 50 and 700 A m−2, and the rotation rate of the rotating anode between 100 and 500 rpm (laminar regime). Hypobromite and bromate were found as by-products, as expected. Bromite was not detected. Higher bromate levels were formed at higher current density, but no clear relationship was observed between bromate concentration and the rotation rate or temperatures between 5 and 30 °C. Bromate yields higher than 90% were found at higher charge passed. Perbromate was found as a new potential synthesis or disinfection by-product (DBP), but no perbromate was detected at the lowest bromide concentrations and under drinking water conditions. The perbromate yield was about 1%, and somewhat lower when bromate was used as a starting material instead of bromide. At a temperature of 5 °C more perbromate was detected compared with experiments at 20°. Approximately 20 times more perchlorate was formed compared with perbromate formation in the presence of chloride ions of equimolar concentration. State of mechanistic considerations is presented and a mechanism for perbromate formation is proposed. The reaction from bromate to perbromate was found to be limited that is in contrast to the earlier studied chlorate-to-perchlorate conversion. In the measured concentration range, reduction processes at the mixed oxide cathode showed a much higher impact on the resulting concentration for perbromate than for bromate.  相似文献   
75.
76.
The rotational isomeric state model was employed to provide a better understanding of the role of chain microstructure on the conformational behavior of homogeneous ethylene-1-olefin copolymers. The chain microstructure was assembled in accordance with the copolymerization theory using a set of conditional probabilities in direct relation to the reactivity ratios and the feed compositions of the comonomers. The catalytic inversion influence on the tacticity of the polymeric microstructure was also taken into account by considering the replication probability during the Monte Carlo simulation. Statistical weight factors of the rotational isomeric states were evaluated using molecular dynamics runs of the various homopolymers according to the earlier work of Mattice et al. Probability distribution surfaces constructed by the integration of the molecular dynamics trajectories of sufficient length to sample all of the conformational space indicated the increase of the probability of g±t joint states at the expense of g±g± pairs with the increase in the side chain length of the 1-olefin comonomers. It was also indicated that this behavior had a maximum around poly(1-butene)/poly(1-hexene) with an apparent reversal in case of poly(1-octene) due to the side chain crowding, which forces the chain to favor more of the g±g± joint states. The characteristic ratios calculated for the copolymers on the basis of the rotational isomeric state model also indicated the increased extension of the polymer backbone with the increase in the side chain length. The lower characteristic ratio calculated for the octene polymers may, in fact, explain the experimental observation that poly(1-octene) has a lower melting point than those of other poly(1-olefin)s of shorter side chains. A complete account of the role of tacticity on the characteristic ratio and the radial distribution function is also given.  相似文献   
77.
This paper presents further results and extensions of our previous point defect model for time-dependent growth of passive oxide films on metal surfaces. Specifically, by accounting for vacancies as material species rather than just holes in the oxide lattice, the model incorporates more plausible expressions for interfacial reactions and associated kinetic rate expressions. We use the model to explore the general effects of varying metal valence and electrolyte pH on passive film growth. Furthermore, we examine key assumptions concerning the thickness dependence of the electric field within the film. When the electric field inside the film remains constant and the rate constant for oxygen vacancy production varies with applied potential, the model predicts trends in thickness versus potential in reasonable agreement with experimental data for a variety of metal/metal oxide systems. This represents a considerable improvement upon the previous ‘high-field’ form of the model which assumed rate constants independent of potential and electric field in the film varying with thickness.  相似文献   
78.
Fungal hybrid enzymes consisting of a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) module are involved in the biosynthesis of a vast array of ecologically and medicinally relevant natural products. Whereas a dozen gene clusters could be assigned to the requisite PKS–NRPS pathways, the programming of the multifunctional enzymes is still enigmatic. Through engineering and heterologously expressing a chimera of PKS (lovastatin synthase, LovB) and NRPS (cytochalasin synthase, CheA) in Aspergillus terreus, we noted the potential incompatibility of a fungal highly reducing PKS (hrPKS) with the NRPS component of fungal PKS–NRPS hybrids. To rationalize the unexpected outcome of the gene fusion experiments, we conducted extensive bioinformatic analyses of fungal PKS–NRPS hybrids and LovB‐type PKS. From motif studies and the function of the engineered chimeras, a noncanonical function of C‐terminal condensation (C) domains in truncated PKS–NRPS homologues was inferred. More importantly, sequence alignments and phylogenetic trees revealed an evolutionary imprint of the PKS–NRPS domains, which reflect the evolutionary history of the entire megasynthase. Furthermore, a detailed investigation of C and adenylation (A) domains provides support for a scenario in which not only the A domain but also the C domain participates in amino acid selection. These findings shed new light on the complex code of this emerging class of multifunctional enzymes and will greatly facilitate future combinatorial biosynthesis and pathway engineering approaches towards natural product analogues.  相似文献   
79.
A number of polyphosphazenes with negatively charged β‐alanine (β‐Ala) and γ‐amino butyric acid (GABA) side groups were synthesized and studied for their ability to initiate the growth of hydroxyapatite (HAp) during exposure to simulated body fluid (SBF). All the polymers were hydrolytically sensitive, with the final hydrolysis rate dependent on the specific active side groups (GABA > β‐Ala). These systems also underwent extensive mineralization, with calcium phosphate deposited across their entire surface during exposure to SBF (up to 115 wt % gain after 4 weeks). This degree of deposition is a major advance over previously reported polyphosphazene systems, which underwent a maximum of 27 wt % gain after immersion in SBF for 4 weeks. The extent of mineralization over the surface was monitored using environmental scanning electron microscopy (ESEM) coupled with energy dispersive X‐ray spectroscopy (EDS). In addition, X‐ray diffraction (XRD) was used to determine the identity of the mineralized material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41741.  相似文献   
80.
A series of N‐bromoacetylglycosylamines and bromoketone C‐glycosides were synthesised from complex xyloglucan oligosaccharide (XyGO) scaffolds as specific active‐site affinity labels for endo‐xyloglucanases. Compounds based on XXXG (Xyl3Glc4) and XLLG (Xyl3Glc4Gal2) oligosaccharides exhibited strikingly higher affinities and higher rates of irreversible inhibition than known cellobiosyl and new lactosyl disaccharide congeners when tested with endo‐xyloglucanases from two distinct glycoside hydrolase (GH) families. Intact‐protein mass spectrometry indicated that inactivation with XyGO derivatives generally resulted in a 1:1 labelling stoichiometry. Together, these results indicate that XyGO‐based affinity reagents have significant potential as inhibitors and proteomic reagents for the identification and analysis of diverse xyloglucan‐active enzymes in nature, to facilitate industrial enzyme applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号