首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   33篇
电工技术   4篇
化学工业   96篇
金属工艺   6篇
机械仪表   6篇
建筑科学   13篇
能源动力   16篇
轻工业   33篇
水利工程   3篇
石油天然气   3篇
无线电   33篇
一般工业技术   98篇
冶金工业   15篇
自动化技术   39篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   7篇
  2020年   10篇
  2019年   14篇
  2018年   10篇
  2017年   14篇
  2016年   22篇
  2015年   11篇
  2014年   14篇
  2013年   25篇
  2012年   24篇
  2011年   28篇
  2010年   18篇
  2009年   24篇
  2008年   19篇
  2007年   19篇
  2006年   15篇
  2005年   9篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
排序方式: 共有365条查询结果,搜索用时 265 毫秒
121.
Ab initio quantum chemical computations have been done to determine the energetics and reaction pathways of hydroformylation of higher alkenes using a rhodium complex homogeneous catalyst. Calculation of fragments of the potential energy surfaces of the HRh(CO)(PPh3)3‐catalyzed hydroformylation of 1‐decene, 1‐dodecene, and styrene were performed by the restricted Hartree‐Fock method at the second‐order MØller‐Plesset (MP2) level of perturbation theory and basis set of 6‐31++G(d,p). Geometrically optimized structures of the intermediates and transition states were identified. Three generalized rate models were developed on the basis of above reaction path analysis as well as experimental findings reported in the literature. The kinetic and equilibrium parameters of the models were estimated by nonlinear least square regression of available literature data. The model based on H2‐oxidative addition fitted the data best; it predicts the conversion of all the alkenes quite satisfactorily with an average deviation of 7.6% and a maximum deviation of 13%. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
122.
Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate. The common approach to handle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling, random oversampling, or Synthetic Minority Oversampling Technique (SMOTE) algorithms. This paper compared the classification performance of three popular classifiers (Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine) in predicting machine failure in the Oil and Gas industry. The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945 (97%) ‘non-failure’ and 528 (3%) ‘failure data’. The three independent variables to predict machine failure were pressure indicator, flow indicator, and level indicator. The accuracy of the classifiers is very high and close to 100%, but the sensitivity of all classifiers using the original dataset was close to zero. The performance of the three classifiers was then evaluated for data with different imbalance rates (10% to 50%) generated from the original data using SMOTE, SMOTE-Support Vector Machine (SMOTE-SVM) and SMOTE-Edited Nearest Neighbour (SMOTE-ENN). The classifiers were evaluated based on improvement in sensitivity and F-measure. Results showed that the sensitivity of all classifiers increases as the imbalance rate increases. SVM with radial basis function (RBF) kernel has the highest sensitivity when data is balanced (50:50) using SMOTE (Sensitivitytest = 0.5686, Ftest = 0.6927) compared to Naïve Bayes (Sensitivitytest = 0.4033, Ftest = 0.6218) and Logistic Regression (Sensitivitytest = 0.4194, Ftest = 0.621). Overall, the Gaussian Naïve Bayes model consistently improves sensitivity and F-measure as the imbalance ratio increases, but the sensitivity is below 50%. The classifiers performed better when data was balanced using SMOTE-SVM compared to SMOTE and SMOTE-ENN.  相似文献   
123.
Semiconductor colloidal quantum wells (CQWs) provide anisotropic emission behavior originating from their anisotropic optical transition dipole moments (TDMs). Here, solution-processed colloidal quantum well light-emitting diodes (CQW-LEDs) of a single all-face-down oriented self-assembled monolayer (SAM) film of CQWs that collectively enable a supreme level of IP TDMs at 92% in the ensemble emission are shown. This significantly enhances the outcoupling efficiency from 22% (of standard randomly-oriented emitters) to 34% (of face-down oriented emitters) in the LED. As a result, the external quantum efficiency reaches a record high level of 18.1% for the solution-processed type of CQW-LEDs, putting their efficiency performance on par with the hybrid organic-inorganic evaporation-based CQW-LEDs and all other best solution-processed LEDs. This SAM-CQW-LED architecture allows for a high maximum brightness of 19,800 cd m−2 with a long operational lifetime of 247 h at 100 cd m−2 as well as a stable saturated deep-red emission (651 nm) with a low turn-on voltage of 1.7 eV at a current density of 1 mA cm−2 and a high J90 of 99.58 mA cm−2. These findings indicate the effectiveness of oriented self-assembly of CQWs as an electrically-driven emissive layer in improving outcoupling and external quantum efficiencies in the CQW-LEDs.  相似文献   
124.
In this study, the effects of a new type of non-metallic fiber (polypropylene twisted bundle (PPTB)) on the slump and mechanical properties of oil palm shell (OPS) concrete have been investigated. The results showed that increasing the volume fraction of PPTB fibers, it slightly decreases the workability and density of the concrete. It has found that the compressive strength of OPS concrete increases with increasing PPTB fiber volume fraction. The results revealed that the reinforcement of OPS concrete with steel and PPTB fibers reduces the strength loss of OPS concrete in poor curing environments. In addition, the fiber with low volume fraction (up to 0.25 %) is more efficient in improving the flexural strength of OPS concrete compared to its splitting tensile strength. The average modulus of elasticity (E value) is obtained to be 17.4 GPa for all mixes, which is higher than the values reported in previous studies and is within the range for normal weight concrete. The performance of the PPTB fibers is comparable to that for steel fibers at a volume fraction (Vf) of 0.5 %, which provides less dead load for lightweight concrete. The findings of this study showed that the PPTB fibers can be used as an alternative material to enhance the properties of OPS concrete. Hence, PPTB fibers are a promising alternative for lightweight concrete applications.  相似文献   
125.
Graphene has ultra-high electrical and thermal conductivity, which makes graphene as the most encouraging fillers for thermally conductive composites. Graphene and/or carbon black filled conductive polymer composite (CPC) films used as heating element are smarter than the traditional heating elements due to less environmental pollution, ease of application on many surfaces and possess the merits of lightweight. In this study, we investigated mainly the production, characterization and industrial application of graphene/carbon black reinforced styrene acrylic copolymer emulsion matrix composite films deposited on polyvinyl chloride for flexible heating element. After that, the films were dried at room temperature for 24 h in air. Structural and surface properties of the CPC films were characterized by X-ray diffraction and scanning electron microscopy. Temperature, time and voltage relation of the produced composite films were investigated. Heating and electrical properties of the CPC films were determined by using a thermal camera and 4-point probe measurement system, respectively. The electrical resistivity of the CPC films decreases from ~?108 to 101 Ω cm with increasing the filler content or using a combination of two fillers. Graphene and carbon black filled conductive polymer composites to be considered as candidates for flexible heating element applications exhibited good electrical and heating properties thanks to synergistic effect of fillers.  相似文献   
126.
In recent years a number of metaheuristic search techniques have been widely used in developing structural optimization algorithms. Amongst these techniques are genetic algorithms, simulated annealing, evolution strategies, particle swarm optimizer, tabu search, ant colony optimization and harmony search. The primary goal of this paper is to objectively evaluate the performance of abovementioned seven techniques in optimum design of pin jointed structures. First, a verification of the algorithms used to implement the techniques is carried out using a benchmark problem from the literature. Next, the techniques compiled in an unbiased coding platform are evaluated and compared in terms of their solution accuracies as well as convergence rates and reliabilities using four real size design examples formulated according to the design limitations imposed by ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution). The results reveal that simulated annealing and evolution strategies are the most powerful techniques, and harmony search and simple genetic algorithm methods can be characterized by slow convergence rates and unreliable search performance in large-scale problems.  相似文献   
127.
In this work, novel redox electrolytes based on poly (ethylene oxide) (PEO) were prepared using binary ionic liquid 1-methyl-3-propylimidazolium iodide (MPII) with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI) or 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) to reduce the high viscosity of MPII. The addition of low viscosity ionic liquids is to overcome the low mass transportation of redox mediator faced by the single ionic liquid. Therefore, different ratios of ionic liquids were added, and their effect on the electrical properties of the ionic liquid-based gel polymer electrolytes (GPE) was observed. It was confirmed that all the system dominant by ions rather than electron. The binary ionic liquid system containing 37.5 wt.% of BMIMBF4 showed the highest ionic conductivity of 24.2 mS cm−1. Fourier-transform infrared and X-ray diffraction studies confirmed that complexation occurred between all materials. The combination of two alkyl side chain length has enhanced the efficiency of the DSSC with short-circuit current density (JSC) of 26.81 mA cm−1, open-circuit voltage (VOC) of 0.67 V, fill factor of 44.5% and photovoltaic conversion efficiency (η) of 7.8%. This work has provided valuable insight for further stability of binary ionic liquid-based GPE compared to single ionic liquid electrolytes.  相似文献   
128.
Variants in STUB1 cause both autosomal recessive (SCAR16) and dominant (SCA48) spinocerebellar ataxia. Reports from 18 STUB1 variants causing SCA48 show that the clinical picture includes later-onset ataxia with a cerebellar cognitive affective syndrome and varying clinical overlap with SCAR16. However, little is known about the molecular properties of dominant STUB1 variants. Here, we describe three SCA48 families with novel, dominantly inherited STUB1 variants (p.Arg51_Ile53delinsProAla, p.Lys143_Trp147del, and p.Gly249Val). All the patients developed symptoms from 30 years of age or later, all had cerebellar atrophy, and 4 had cognitive/psychiatric phenotypes. Investigation of the structural and functional consequences of the recombinant C-terminus of HSC70-interacting protein (CHIP) variants was performed in vitro using ubiquitin ligase activity assay, circular dichroism assay and native polyacrylamide gel electrophoresis. These studies revealed that dominantly and recessively inherited STUB1 variants showed similar biochemical defects, including impaired ubiquitin ligase activity and altered oligomerization properties of the CHIP. Our findings expand the molecular understanding of SCA48 but also mean that assumptions concerning unaffected carriers of recessive STUB1 variants in SCAR16 families must be re-evaluated. More investigations are needed to verify the disease status of SCAR16 heterozygotes and elucidate the molecular relationship between SCA48 and SCAR16 diseases.  相似文献   
129.
A polyurethane elastomer having mechanical and adhesive properties suitable for liner applications in solid rocket propellants was developed using HTPB as the prepolymer and IPDI as the curing agent. The effects of the NCO/OH ratio (R value) and the trio/diol ratio on the mechanical properties of the polyurethane matrix were investigated. The reaction of HTPB and IPDI is followed by monitoring the changes in the IR absorption bands of the NCO stretching at 2255 cm−1 and the CO stretching at 1730 cm−1. It was found that the rate of the polyurethane formation obeys an overall second-order kinetics. At an R value of 1.15, the elastomer shows the maximum tensile strength and 200% elongation at break. The hardness, elongation, and the tensile strength reach a steady value around the same R value. The elastomers having a triol/diol ratio less than 0.03 show a decrease in the tensile strength and modulus with a concomitant increase in elongation. At a triol/diol ratio greater than 0.05, the tensile strength increases to about the same value for the liner composition without any triol component. The elongation reaches a steady level at a triol/diol ratio of 0.10 and one observes a steady increase in hardness up to 0.5. The modulus for the compositions having a triol/diol ratio greater than 0.1 is about 50% higher than that for the composition without triol. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2347–2354, 1997  相似文献   
130.
Starting from aromatic diamines, a series of bismaleimides (BMIs) and maleimide-terminated structural resins were prepared in solution and characterized. Maleimide-terminated resins were prepared through Michael addition reaction with 3/2 molar ratio of bismaleimide and aromatic diamine as reactants. The structural analysis was performed by FTIR and 1H-NMR spectroscopy. Thermal properties are investigated by TGA, DTA, and DSC. Number-average molecular-weights of the resins were determined by cryoscopy. The presence of methylene ( CH2 ) and ether ( O ) groups in the starting materials affect the reactivity and the degree of chain extension of the resins. From the viscosity measurements it was also found that thermal polymerization of BMIs could be taking place together with the Michael addition. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号