首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   37篇
  国内免费   4篇
电工技术   13篇
综合类   2篇
化学工业   174篇
金属工艺   11篇
机械仪表   22篇
建筑科学   20篇
矿业工程   1篇
能源动力   102篇
轻工业   39篇
水利工程   7篇
石油天然气   18篇
无线电   79篇
一般工业技术   168篇
冶金工业   48篇
原子能技术   2篇
自动化技术   177篇
  2023年   11篇
  2022年   24篇
  2021年   50篇
  2020年   28篇
  2019年   24篇
  2018年   44篇
  2017年   33篇
  2016年   48篇
  2015年   29篇
  2014年   40篇
  2013年   92篇
  2012年   57篇
  2011年   65篇
  2010年   51篇
  2009年   46篇
  2008年   28篇
  2007年   20篇
  2006年   17篇
  2005年   13篇
  2004年   18篇
  2003年   14篇
  2002年   12篇
  2001年   8篇
  2000年   4篇
  1999年   9篇
  1998年   16篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1984年   4篇
  1983年   4篇
  1981年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1970年   1篇
  1968年   1篇
  1960年   1篇
  1959年   2篇
排序方式: 共有883条查询结果,搜索用时 15 毫秒
21.
Protein function prediction is an important problem in functional genomics. Typically, protein sequences are represented by feature vectors. A major problem of protein datasets that increase the complexity of classification models is their large number of features. Feature selection (FS) techniques are used to deal with this high dimensional space of features. In this paper, we propose a novel feature selection algorithm that combines genetic algorithms (GA) and ant colony optimization (ACO) for faster and better search capability. The hybrid algorithm makes use of advantages of both ACO and GA methods. Proposed algorithm is easily implemented and because of use of a simple classifier in that, its computational complexity is very low. The performance of proposed algorithm is compared to the performance of two prominent population-based algorithms, ACO and genetic algorithms. Experimentation is carried out using two challenging biological datasets, involving the hierarchical functional classification of GPCRs and enzymes. The criteria used for comparison are maximizing predictive accuracy, and finding the smallest subset of features. The results of experiments indicate the superiority of proposed algorithm.  相似文献   
22.
23.
In this research, minimizing the expected number of tardy jobs in a dynamic m machine flow-shop scheduling problem, i.e., $ {F_m}\left| {{r_j}\left| {{\text{E}}\left[ {\sum {{U_j}} } \right]} \right.} \right. $ is investigated. It is assumed that the jobs with deterministic processing times and stochastic due dates arrive randomly to the flow-shop cell. The due date of each job is assumed to be normally distributed with known mean and variance. A dynamic method is proposed for this problem by which the m machine stochastic flow-shop problem is decomposed into m stochastic single-machine sub-problems. Then, each sub-problem is solved as an independent stochastic single-machine scheduling problem by a mathematical programming model. Comparison of the proposed method with the most effective rule of thumb for the proposed problem, i.e., shortest processing time first rule shows that the proposed method performs 23.9 % better than the SPT rule on average for industry-size scheduling problems.  相似文献   
24.
Implementation of genetic algorithm in a PIC32MX microcontroller-based polarization control system is proposed and demonstrated. The controller measures the signal intensity that is used to estimate the genetic value. This process is controlled by the genetic algorithm rather than referring to the Look-Up-Table as implemented in existing solutions. To reach optimum performance, the code is optimized by using the best genetic parameters so that the fastest execution time can be achieved. An ability of genetic algorithm to work efficiently in polarization control system possesses many advantages including easy code construction, low memory consumption and fast control speed. Genetic algorithm is intelligent enough to be used for endless polarization stabilization and in the worst case, able to stabilize the polarization changes in 300 μs. In the best case the response time can reach 17 μs.  相似文献   
25.
Two modified electrodes (Pb/PbO2 and C/PbO2) were prepared by electrodepositing a lead oxide layer on lead and carbon sub-strates. These modified electrodes were used as anodes for the generation of sodium hypochlorite (NaOCl) from sodium chloride solution. Different operating conditions and factors affecting the treatment process of NaOCl generation, including current density, pH values, con-ductive electrolytes, and electrolysis time, were studied and optimized. By comparison the C/PbO2 electrode shows a higher efficiency than the Pb/PbO2 electrode for the generation of NaOCl.  相似文献   
26.
Improved load following capability is one of the main technical performances of advanced PWR (APWR). Controlling the nuclear reactor core during load following operation encounters some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking, while the core is subject to large and sharp variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent of core power peaking, in form of a practical parameter. This paper, proposes a new intelligent approach to AO control of PWR nuclear reactors core during load following operation. This method uses a neural network model of the core to predict the dynamic behavior of the core and a fuzzy critic based on the operator knowledge and experience for the purpose of decision-making during load following operations. Simulation results show that this method can use optimum control rod groups maneuver with variable overlapping and may improve the reactor load following capability.  相似文献   
27.
Here strong electroactive shape memory nanocomposites were prepared by incorporating graphene nanoplatelets into poly(vinyl acetate) (PVAc ) through the simple solvent mixing method. TEM and XRD revealed that well exfoliated graphene nanoplatelets formed a continuous network throughout the matrix with a large amount of interconnectedness. Dynamic mechanical analysis showed that the inclusion of graphene significantly improves both glassy and rubbery moduli of the matrix. Furthermore, the prepared nanocomposites demonstrated a marked electrical conductivity up to 24.7 S m?1 and thereby surprisingly rapid electrical actuation behaviour exhibiting a 100% recovery ratio in 2.5 s. Moreover, PVAc and its nanocomposites displayed scratch self‐healing capability. This work demonstrates that the PVAc /graphene nanocomposites with high modulus and excellent electroactive shape memory performance can be a promising material in many applications such as sensors and fast deployable and actuating devices. © 2016 Society of Chemical Industry  相似文献   
28.
CO2 based power and refrigeration cycles have been developed and analyzed in different existing studies. However, the development of a CO2 based comprehensive energy system and its performance analysis have not been considered. In this study, the integration of a CO2 based solar parabolic trough collector system, a supercritical CO2 power cycle, a transcritical CO2 power cycle, and a CO2 based cascade refrigeration system for hydrogen production and multigeneration purpose is analyzed thermodynamically. This study aims to analyze and compare the difference in the thermodynamic performance of comprehensive energy systems when CO2 is used as the working fluid in all the cycles with a system that uses other working fluids. Therefore, two comprehensive energy systems with the same number of subsystems are designed to justify the comparison. The second comprehensive energy system uses liquid potassium instead of CO2 as a working fluid in the solar parabolic trough collector and a steam cycle is used to replace the transcritical CO2 power cycle. Results of the energy and exergy performance analysis of two comprehensive energy systems showed that the two systems can be used for the multigeneration purpose. However, the use of a steam cycle and potassium-based solar parabolic trough collector increases the comprehensive energy systems’ overall energy and exergy efficiency by 41.9% and 26.7% respectively. Also, the use of liquid potassium as working fluid in the parabolic trough collectors increases the absorbed solar energy input by 419 kW and 2100 kW thereby resulting in a 23% and 90.7% increase in energetic and exergetic efficiency respectively. The carbon emission reduction potential of the two comprehensive energy systems modelled in this study is also analyzed.  相似文献   
29.
30.
Choline chloride + phenylacetic acid‐based deep eutectic solvents are studied. Their most relevant experimental physicochemical properties at different mixing ratios together with the CO2 solubility data obtained in wide pressure and temperature ranges are reported. The presented materials exhibit a significant CO2 capture performance with low corrosion effect when compared with the most common amine‐based CO2 capture agents. Detailed rheological measurements are carried out and various models are applied to describe the dynamic flow behavior of the solvents. The CO2 absorption mechanism is evaluated by studying the behavior of the liquid gas and interface. Due to the advantages of low cost, nontoxicity, and favorable physical properties, these solvents are an environmentally promising alternative for effective CO2 capture technological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号