首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2488篇
  免费   238篇
  国内免费   32篇
电工技术   72篇
综合类   9篇
化学工业   861篇
金属工艺   73篇
机械仪表   83篇
建筑科学   88篇
矿业工程   6篇
能源动力   135篇
轻工业   197篇
水利工程   48篇
石油天然气   50篇
武器工业   5篇
无线电   206篇
一般工业技术   386篇
冶金工业   93篇
原子能技术   9篇
自动化技术   437篇
  2024年   9篇
  2023年   42篇
  2022年   67篇
  2021年   173篇
  2020年   137篇
  2019年   186篇
  2018年   240篇
  2017年   220篇
  2016年   193篇
  2015年   115篇
  2014年   200篇
  2013年   282篇
  2012年   194篇
  2011年   213篇
  2010年   114篇
  2009年   106篇
  2008年   68篇
  2007年   46篇
  2006年   46篇
  2005年   17篇
  2004年   11篇
  2003年   15篇
  2002年   9篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   7篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有2758条查询结果,搜索用时 15 毫秒
121.
In recent earthquakes, many buildings have been damaged due to the soft‐storey mechanism failure. The seismic design codes for buildings do not contain enough criteria to predict the real displacement of such buildings. This paper focuses on evaluating the nonlinear displacement of buildings that fail in soft‐storey mechanism form. Results show that the nonlinear static procedure with coefficient method, which is described in Chapter 3 of ASCE/SEI 41‐06, does not have sufficient accuracy for estimation of structure displacement demand in such buildings. In this paper, the coefficient methodology is used for evaluating the target displacement for 5‐storey, 8‐storey and 15‐storey special moment resisting steel frames. For this purpose, dynamic nonlinear time‐history analysis has been applied for the mentioned structures having a soft‐storey mechanism failure form. The numerical results of storey displacement and interstorey drift were compared with those values obtained from the coefficient method described in Chapter 3 of ASCE/SEI 41‐06. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
122.
123.
Poly(styrene‐co‐divinylbenzene)/single‐walled carbon nanotubes (SWCNTs) polymerized high‐internal‐phase emulsion (polyHIPE) nanocomposite foams were successfully synthesized with various types of aqueous‐phase surfactants. The effects of anionic, cationic, nonionic, and mixed surfactants on the morphology and electrical conductivity of the resulting nanocomposite foams were investigated. The use of an anionic surfactant, sodium dodecylbenzesulfonate (SDBS), did not completely result in the typical polyHIPE nanocomposite foam microstructure because of the partial instability of the high‐internal‐phase emulsion. The nanocomposite foams synthesized by nonionic surfactants, that is, Pluronic F127 and Triton X‐100, and the cationic/anionic mixture, cetyltrimethylammonium bromide/SDBS, exhibited the proper morphology, but the resulting nanocomposite foams were electrically insulators. Interestingly, the use of a Gemini‐like surfactant, sodium dioctylsulfosuccinate (SDOSS), significantly improved both the typical morphology and electrical properties of the resulting nanocomposite foams because of the probable stronger interactions of SDOSS molecules with SWCNTs. The typical morphology of the nanocomposite foam synthesized with the SDOSS/F127 mixed surfactant was significantly improved, but the electrical conductivity decreased to some extent compared with the SDOSS‐synthesized nanocomposite foams. This behavior was attributed to an increase in the tunneling length of the electrons between adjacent SWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43883.  相似文献   
124.
The development of desirable chemical structures and properties in nanocomposite membranes involve steps that need to be carefully designed and controlled. This study investigates the effect of adding multiwalled nanotubes (MWNT) on a Kapton–polysulfone composite membrane on the separation of various gas pairs. Data from Fourier transform infrared spectroscopy and scanning electron microscopy confirm that some studies on the Kapton–polysulfone blends are miscible on the molecular level. In fact, the results indicate that the chemical structure of the blend components, the Kapton–polysulfone blend compositions, and the carbon nanotubes play important roles in the transport properties of the resulting membranes. The results of gas permeability tests for the synthesized membranes specify that using a higher percentage of polysulfone (PSF) in blends resulted in membranes with higher ideal selectivity and permeability. Although the addition of nanotubes can increase the permeability of gases, it decreases gas pair selectivity. Furthermore, these outcomes suggest that Kapton–PSF membranes with higher PSF are special candidates for CO2/CH4 separation compared to CO2/N2 and O2/N2 separation. High CH4, CO2, N2, and O2 permeabilities of 0.35, 6.2, 0.34, and 1.15 bar, respectively, are obtained for the developed Kapton–PSF membranes (25/75%) with the highest percentage of carbon nanotubes (8%), whose values are the highest among all the resultant membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43839.  相似文献   
125.
In this study, a novel reactive toughener for the epoxy resin was developed and compared with traditional hydroxyl‐terminated polybutadiene (HTPB). For this purpose, the highly reactive aliphatic amine‐terminated polybutadiene (ATPB) was synthesized at ambient conditions by nucleophilic substitution amination. The characterizations of the product were provided by Fourier transform infrared and 1H NMR spectroscopy. According to the mechanical test results, incorporation of ATPB into epoxy networks can significantly toughen the epoxy matrix. The addition of 10 phr ATPB increased the critical stress intensity factor (KIC) and critical strain energy release rate (GIC) of the epoxy from 0.85 to 2.16 MPa m1/2 and from 0.38 to 3.02 kJ m?2, respectively. Furthermore, unlike HTPB, the presence of the ATPB did not deteriorate the tensile strength of the matrix. The toughening and failure mechanisms were discussed based on the epoxy network morphological characteristics. The reduction in cross‐linking density and glass transition temperature of the epoxy system upon modification with liquid rubbers was confirmed by dynamic mechanical analysis. This article opens up the possibility of utilizing reactive flexible diamines with polybutadiene backbone as effective toughening agents for thermoset polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44061.  相似文献   
126.
Electrochemical synthesis of coordination polymers of Cu(II), [Cu(TDA)]n and [Cu2(BTC)(H2O)6?6H2O]n in which H2TDA is 2,2′-thiodiacetic acid and BTC stands for 1,2,4,5-benzenetetracarboxylate was carried out by the electrochemical oxidation of Cu anode in the presence of H2TDA (a flexible ligand), and 1,2,4,5-benzentetracarboxylic acid (H4BTC) (a rigid ligand) in aqueous solutions. The structure of coordination polymers were characterized by scanning electron microscopy, X-ray powder diffraction, elemental analysis, thermal gravimetric and differential thermal analyses. The crystal structure of the compounds consists of one-dimensional cubical crystal polymeric units of [Cu(TDA)]n and [Cu2(BTC)(H2O)6?6H2O]n. Furthermore, the coordination number of Cu (II) ions in synthesized coordination polymers to be found five. The main advantages of electrosynthesis are the minor synthesis time, the milder conditions and the facile synthesis of coordination polymer coatings.  相似文献   
127.
In this investigation, a two‐step method for the preparation of magnesium silicide (Mg2Si) nanopowder was studied. This method is known as mechanical alloying followed by heat treatment. The results showed that the compositions of the combustion products depended on the milling time, heat treatment temperature, and starting mixtures. Pure Mg2Si nanopowder was formed after short milling time and heat treatment, from Mg and Si powders with the mole ratio of 2.1:1 (Mg:Si) at 500°C in Ar atmosphere. Using the Mg2Si nanopowder, Mg2Si ceramic was produced by spark plasma sintering at 800°C under 50 MPa for 15 min. Composition and structure of reactants and products were examined by X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM) and high‐resolution transmission electron microscopy (HR‐TEM).  相似文献   
128.
In this article, a novel method for synthesis of 2-substituted benzimidazoles using MnO2 nanoparticles as a convenient oxidant agent in ethanol-water (1:1) as solvent under ultrasound irradiation was demonstrated. In this protocol the desired products were purely obtained in high yields. The main advantages of this research are: mild procedure, simplicity of method, easily work-up, high yields, and short reaction times. The MnO2 nanoparticles were synthesized through a solid-state reaction route using simple strarting materials. Furthermore, their structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR).  相似文献   
129.
Aphrons are surfactant‐stabilized microbubbles with thick soapy shells. Colloidal gas aphrons (CGA) with an average diameter of 50 μm have some unique properties: a high interfacial area due to their small size, a thick soapy shell and, above all, high stability compared to conventional foams. Various factors that can influence the performance of CGA dispersion, such as the type and concentration of surfactant, mixing time and processing parameters, have already been extensively studied. However, although CGA applications in various fields continue to advance, the influence of the disk diameter and baffle position of the aphron generator on the performance of CGAs has not been well studied. In this experimental work, the influences of the spinning disk diameter and baffle position inside the aphron generator have been investigated. Analyzing the drainage curve of various experimental runs revealed that the disk diameter and baffle position might have a positive impact on the stability of CGA dispersion particularly when the generation time or surfactant concentration is low. The experimental findings have been supported by other techniques such as half‐life time and a new stability index, T0.1, the time elapsed when the drained liquid from CGA dispersion reaches ten percent of its final height.  相似文献   
130.
This study describes the preparation of colloidal polyaniline/polyvinyl alcohol (PAn/PVA) nanocomposite by chemical polymerization of aniline (AN) in the presence of ammonium peroxydisulphate (APS) as an oxidant and PVA as a stabilizer. The product was characterized morphologically using a scanning electron microscope (SEM) and transmission electron microscopy (TEM), chemically using Fourier transform infrared (FTIR) and optically UV–visible. The prepared polymer was then tested for the antibacterial properties against gram‐negative bacteria: Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa); and gram‐positive bacteria: Staphylococcus aureus (S. aureus). The antibacterial properties were assessed by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBCs), and the bactericidal effect methods. The results clearly showed that colloidal PAn/PVA nanocomposite strongly inhibits the growth of wild‐type E. coli (19 ± 0.5) mm followed by P. aeruginosa (17 ± 0.5 mm) and S. aureus (17.5 ± 0.5 mm) bacteria. S. aureus was completely killed after exposure for only 15 min, whereas S. aureus and E. coli were completely killed after exposure for 25 min. J. VINYL ADDIT. TECHNOL., 22:267–272, 2016. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号