首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1208篇
  免费   101篇
  国内免费   20篇
电工技术   10篇
综合类   9篇
化学工业   274篇
金属工艺   31篇
机械仪表   38篇
建筑科学   25篇
能源动力   93篇
轻工业   199篇
水利工程   26篇
石油天然气   2篇
无线电   120篇
一般工业技术   256篇
冶金工业   31篇
原子能技术   7篇
自动化技术   208篇
  2024年   2篇
  2023年   35篇
  2022年   81篇
  2021年   122篇
  2020年   87篇
  2019年   79篇
  2018年   105篇
  2017年   84篇
  2016年   95篇
  2015年   51篇
  2014年   73篇
  2013年   101篇
  2012年   78篇
  2011年   89篇
  2010年   44篇
  2009年   34篇
  2008年   25篇
  2007年   24篇
  2006年   12篇
  2005年   10篇
  2004年   14篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1329条查询结果,搜索用时 46 毫秒
31.
Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene–butadiene–styrene (SBS), styrene–ethylene–butylene–styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E′) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.  相似文献   
32.
Uncertainties associated with modelling of deteriorating bridges strongly affect management decisions, such as inspection, maintenance and repair actions. These uncertainties can be reduced by the effective use of health monitoring systems, through which information regarding in situ performance can be incorporated in the management of bridges.The objectives of this paper are twofold; first, an improved chloride induced deterioration model for concrete bridges is proposed that can quantify degradation in performance soon after chlorides are deposited on the bridge, rather than when initiation of corrosion at the reinforcement level takes place. As a result, the implications of introducing proactive health monitoring can be assessed using probabilistic durability criteria. Thus, the second objective of the paper is to present a methodology for performance updating of deteriorating concrete bridges fitted with a proactive health monitoring system.This methodology is illustrated via a simple example of a typical bridge element, such as a beam or a part of a slab. The results highlight the benefits from introducing ‘smart’ technology in managing bridges subject to deterioration, and quantify the reduction in uncertainties and their subsequent effect on predictions of future bridge performance.  相似文献   
33.
34.
The advent of healthcare information management systems (HIMSs) continues to produce large volumes of healthcare data for patient care and compliance and regulatory requirements at a global scale. Analysis of this big data allows for boundless potential outcomes for discovering knowledge. Big data analytics (BDA) in healthcare can, for instance, help determine causes of diseases, generate effective diagnoses, enhance QoS guarantees by increasing efficiency of the healthcare delivery and effectiveness and viability of treatments, generate accurate predictions of readmissions, enhance clinical care, and pinpoint opportunities for cost savings. However, BDA implementations in any domain are generally complicated and resource-intensive with a high failure rate and no roadmap or success strategies to guide the practitioners. In this paper, we present a comprehensive roadmap to derive insights from BDA in the healthcare (patient care) domain, based on the results of a systematic literature review. We initially determine big data characteristics for healthcare and then review BDA applications to healthcare in academic research focusing particularly on NoSQL databases. We also identify the limitations and challenges of these applications and justify the potential of NoSQL databases to address these challenges and further enhance BDA healthcare research. We then propose and describe a state-of-the-art BDA architecture called Med-BDA for healthcare domain which solves all current BDA challenges and is based on the latest zeta big data paradigm. We also present success strategies to ensure the working of Med-BDA along with outlining the major benefits of BDA applications to healthcare. Finally, we compare our work with other related literature reviews across twelve hallmark features to justify the novelty and importance of our work. The aforementioned contributions of our work are collectively unique and clearly present a roadmap for clinical administrators, practitioners and professionals to successfully implement BDA initiatives in their organizations.   相似文献   
35.
Aluminum is the best metal for producing metal matrix composites which are known as one of the most useful and high-tech composites in our world. Combining aluminum and nano Al2O3 particles will yield a material with high mechanical properties. Characterization of tribological properties revealed that the presence of nano particles significantly increased wear resistance of the composite. In case of unreinforced Al alloy, the depth of penetration is governed by the hardness of the specimen surface and applied load. But, in case of Al matrix composite, the depth of penetration of the harder asperities of hardened steel disk is primarily governed by the protruded hard ceramic reinforcement. The hard Al2O3 particles act as a protrusion over the matrix, carries a major portion of the applied load and protect the abrasives from penetration into the specimen surface.  相似文献   
36.
Nickel ferrites with high theoretical capacitance value as compared to the other metal oxides have been applied as electrode material for energy storage devices i.e. batteries and supercapacitors. High tendency towards aggregation and less specific surface area make the metal oxides poor candidate for electrochemical applications. Therefore, the improvements in the electrochemical properties of nickel ferrites (NiFe2O4) are required. Here, we report the synthesis of graphene nano-sheets decorated with spherical copper substituted nickel ferrite nanoparticles for supercapacitors electrode fabrication. The copper substituted and unsubstituted NiFe2O4 nanoparticles were prepared via wet chemical co-precipitation route. Reduced graphene oxide (rGO) was prepared via well-known Hummer's method. After structural characterization of both ferrite (Ni1-xCuxFe2O4) nanoparticles and rGO, the ferrite particles were decorated onto the graphene sheets to obtain Ni1-xCuxFe2O4@rGO nanocomposites. The confirmation of preparation of these nanocomposites was confirmed by scanning electron microscopy (SEM). The electrochemical measurements of nanoparticles and their nanocomposites (Ni0.9Cu0.1Fe2O4@rGO) confirmed that the nanocomposites due to highly conductive nature and relatively high surface area showed better capacitive behavior as compared to bare nanoparticles. This enhanced electrochemical energy storage properties of nanocomposites were attributed to the graphene and also supported by electrical (I-V) measurements. The cyclic stability experiments results showed ~65% capacitance retention after 1000 cycles. However this retention was enhanced from 65% to 75% for the copper substituted nanoparticles (Ni0.9Cu0.1Fe2O4) and 65–85% for graphene based composites. All this data suggest that these nanoparticles and their composites can be utilized for supercapacitors electrodes fabrication.  相似文献   
37.
38.
In this work, the effect of electric potential on the mechanical (Stresses, strains, displacement) and electrical (electrical displacement and intensity) response of a Functionally graded piezoelectric (FGP) hollow sphere is analytically investigated. The sphere is under the action of internal/external pressure and temperature gradient as well. The inhomogeneity is based on power law in radial direction. The analysis is done in two parts: elastic response and plastic response, using Tresca yield criterion. It is shown by illustrative example that under internal pressure and assumed model parameters, the commencement of plastic region is from outside surface towards inside in the plastic zone is extended with the increase of electric potential. Interestingly, radial stress and displacement have an extreme not on the boundaries, but on the inside.  相似文献   
39.
The effect of metal(Ti,Ni,and Au) electrodes on humidity sensing properties of electrospun TiO2 nanofibers was investigated in this work.The devices were fabricated by evaporating metal contacts on SiO2 layer thermally grown on silicon substrate.The separation between the electrodes was 90μm for all sensors.The sensors were tested from 40%to 90%relative humidity(RH) by AC electrical characterization at room temperature. When sensors are switched between 40%and 90%RH,the corresponding response and recovery time are 3 s and 5 s for Ti-electrode sensor,4 s and 7 s for Ni-electrode sensor,and 7 s and 13 s for Au-electrode sensor.The hysteresis was 3%,5%and 15%for Ti-,Ni-,and Au-electrode sensor,respectively.The sensitivity of Ti,Ni,and Au-electrode sensors are 7.53 MΩ/%RH,5.29 MΩ/%RH and 4.01 MΩ/%RH respectively at 100 Hz.Therefore Ti-electrode sensor is found to have linear response,fast response and recovery time and higher sensitivity as compared with those of Ni- and Au-electrode sensors.Comparison of humidity sensing properties of sensors with different electrode material may propose a compelling route for designing and optimizing humidity sensors.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号