首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1470篇
  免费   89篇
  国内免费   3篇
电工技术   15篇
综合类   1篇
化学工业   250篇
金属工艺   12篇
机械仪表   11篇
建筑科学   63篇
矿业工程   3篇
能源动力   62篇
轻工业   265篇
水利工程   17篇
石油天然气   4篇
无线电   188篇
一般工业技术   155篇
冶金工业   51篇
原子能技术   1篇
自动化技术   464篇
  2024年   3篇
  2023年   12篇
  2022年   29篇
  2021年   54篇
  2020年   21篇
  2019年   39篇
  2018年   44篇
  2017年   41篇
  2016年   64篇
  2015年   45篇
  2014年   82篇
  2013年   117篇
  2012年   105篇
  2011年   111篇
  2010年   92篇
  2009年   96篇
  2008年   100篇
  2007年   103篇
  2006年   81篇
  2005年   50篇
  2004年   46篇
  2003年   32篇
  2002年   29篇
  2001年   15篇
  2000年   16篇
  1999年   13篇
  1998年   23篇
  1997年   14篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有1562条查询结果,搜索用时 46 毫秒
991.
992.
993.
In this work, the structural, thermal, mechanical, and biocompatibility characteristics of biopolyester‐based nanocomposites with phyllosilicate clays, namely those of poly(3‐hydroxybutyrate) (PHB) with octadecylamine‐modified montmorillonite (C18MMT), are reported. PHB/clay nanocomposites with various loadings were prepared by melt mixing. X‐ray diffraction measurements and transmission electron microscopy images revealed the coexistence of intercalated and exfoliated states in the produced nanocomposites. Atomic force microscopy imaging also shed light to the morphological characteristics of the pure PHB and the prepared nanocomposites. The thermal stability of the nanohybrid materials was improved with the 5 wt % loading nanocomposite to show the best improvement. In addition, the nanohybrids have lower melting point compared to pure PHB and enhanced storage modulus (E′). Finally, the biocompatibility of pristine PHB and the 5 wt % nanocomposite was assessed by studying the morphology and proliferation of osteoblast cells attached on their surfaces. The results after 3 and 7 days of cell culturing indicate the incorporation of nanoclays does not change the cell adhesion and spreading as compared to those on pure PHB. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41628.  相似文献   
994.
The early‐time kinetics (<1 s) of lead sulfide (PbS) quantum dot formation are probed using a novel droplet‐based microfluidic platform, which allows for high‐throughput and real‐time optical analysis of the reactive process with millisecond time resolution. The reaction platform enables the concurrent investigation of the emission characteristics of PbS quantum dots and a real‐time estimation of their size and concentration during nucleation and growth. These investigations reveal a two‐stage mechanism for PbS nanoparticle formation. The first stage corresponds to the fast conversion of precursor species to PbS crystals, followed by the growth of the formed particles. The growth kinetics of the PbS nanoparticles follow the Lifshitz–Slyozov–Wagner model for Ostwald ripening, allowing direct estimation of the rate constants for the process. In addition, the extraction of absorption spectra of ultrasmall quantum dots is demonstrated for first time in an online manner. The droplet‐based microfluidic platform integrated with online spectroscopic analysis provides a new tool for the quantitative extraction of high temperature kinetics for systems with rapid nucleation and growth stages.  相似文献   
995.
In bottom‐contact organic field‐effect transistors (OFETs), the functionalization of source/drain electrodes leads to a tailored surface chemistry for film growth and controlled interface energetics for charge injection. This report describes a comprehensive investigation into separating and correlating the energetic and morphological effects of a self‐assembled monolayers (SAMs) treatment on Au, Ag, and Cu electrodes. Fluorinated 5,11‐bis(triethylsilylethynyl) anthradithiophene (diF‐TES‐ADT) and pentafluorobenzenethiol (PFBT) are employed as a soluble small‐molecule semiconductor and a SAM material, respectively. Upon SAM modification, the Cu electrode devices benefit from a particularly dramatic performance improvement, closely approaching the performance of OFETs with PFBT‐Au and PFBT‐Ag. Ultraviolet photoemission spectroscopy, polarized optical microscopy, grazing‐incidence wide‐angle X‐ray scattering elucidate the metal work function change and templated crystal growth with high crystallinity resulting from SAMs. The transmission‐line method separates the channel and contact properties from the measured OFET current–voltage data, which conclusively describes the impact of the SAMs on charge injection and transport behavior.  相似文献   
996.
A displacement and rotation‐based dynamic finite element formulation for Cosserat plates is discussed in detail in this paper. Special attention is given to the validation of the element through adequate benchmarks and patch tests. The choice of the interpolation functions and the order of integration of the stiffness and the mass matrices are extensively argued. The possibility of local system deficiencies is explored, and a shear locking investigation specifically elaborated for Cosserat plates is carried out. It is shown how the present formulation has interesting computational properties as compared to a classical continuum‐based formulation and how it can provide suitable results despite the use of reduced integration. An example of application of the finite element is given, in which the natural frequencies of a masonry panel modelled by means of discrete elements are computed and compared with the finite elements solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
997.
Recognizing the issues of land shortage and growing concerns for protecting natural lands, installers and project developers, with the help of scientists and engineers, continuously try to locate alternative spots for photovoltaic (PV) system installations. In the present paper a novel approach is suggested and analysed: installing solar PV systems on the downstream face of existing dams. This approach provides advantages that could favour even large‐scale systems with a capacity of several MWp. First, produced energy could cover water reservoirs' needs supporting energy‐intensive processes as water pumping and treatment in a sustainable manner. Moreover, energy provision to inhabited areas near the dams and the subsequent creation of independent mini grids could mitigate energy poverty. In the case of hydroelectric dams, the so‐created hybrid system (PV‐hydro) could become notably efficient, because the intermittent solar energy would be counterbalanced by the flexibility of hydropower. Finally, we found a notable number of existing water reservoirs in Africa that are either under‐utilized or non‐powered. That unexploited energy potential can also be amplified by PV‐system installation. The analysis included data collection from various sources. Datasets have been cross‐checked and extended in the newly created GIS‐based model, enabling the selection of the most suitable sites in South Africa, taken as case studies. Following their identification, the selected dams have been analysed using the PVGIS tool in order to estimate the annual energy production. The results have been very encouraging, indicating that PV systems on the face of dams are an advantageous option for renewable energy production. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   
998.
Fractals are defined as geometric shapes that exhibit symmetry of scale. This simply implies that fractal is a shape that it would still look the same even if somebody could zoom in on one of its parts an infinite number of times. This property is also called self-similarity with several applications including nano-pharmacology and drug nanocarriers. We are interested in the study of the properties of fractal aggregates in a microgravity environment above an orbiting spacecraft. To model the effect we use a complete expression for the gravitational acceleration. In particular on the surface of the Earth the acceleration is corrected for the effect of oblateness and rotation. In the gravitational acceleration the effect of oblateness can be modeled with the inclusion of a term that contains the J 2 harmonic coefficient, as well as a term that depends on the square of angular velocity of the Earth. In orbit the acceleration of gravity at the point of the spacecraft is a function of the orbital elements and includes only in our case the J 2 harmonic since no Coriolis force is felt by the spacecraft. Using the fitting parameter d = 3.0 we have found that the aggregate monomer number N is not significantly affected and exhibits a minute 0.0001 % difference between the geocentric and areocentric latitudes of 90° and 0°. Finally for circular and elliptical orbits around Earth and Mars of various inclinations and eccentricities the aggregate monomer number it’s not affected at all at the orbital altitude of 300 km.  相似文献   
999.
Carbon nanotubes (CNTs) are under intense investigation in materials science owing to their potential for modifying the mechanical proprieties of their composites. In this work, nanomechanical and nanotribological properties of polymer composites, reinforced with multiwall carbon nanotubes (MWCNTs) and single wall carbon nanotubes (SWCNTs), have been studied using the nanoindentation and nanoscratch technique. In particular, three different epoxy resins reinforced using several percentage of two different types of MWCNTs have been studied (range 0–7 wt%). Another resin was reinforced using MWCNTs (range 0–2.5 wt%) and SWCNTs (range 0–5 wt%) as fillers. Hardness and elastic modulus using nanoindenter instrument have been evaluated, while the coefficient of friction of the nanocomposites is obtained using nanoscratch. The results show an evident dependence with the percentage of CNTs. For all types of resins, an optimum in nanomechanical properties is found at intermediate levels of CNTs filling. POLYM. COMPOS., 36:1432–1446, 2015. © 2014 Society of Plastics Engineers  相似文献   
1000.
Here, we report on the dual functionality of tungsten oxide for application as an efficient electron and hole injection/transport layer in organic light‐emitting diodes (OLEDs). We demonstrate hybrid polymer light‐emitting diodes (Hy‐PLEDs), based on a polyfluorene copolymer, by inserting a very thin layer of a partially reduced tungsten oxide, WO2.5, at the polymer/Al cathode interface to serve as an electron injection and transport layer. Significantly improved current densities, luminances, and luminous efficiencies were achieved, primarily as a result of improved electron injection at the interface with Al and transport to the lowest unoccupied molecular orbital (LUMO) of the polymer, with a corresponding lowering of the device driving voltage. Using a combination of optical absorption, ultraviolet spectoscopy, X‐ray photoelectron spectroscopy, and photovoltaic open circuit voltage measurements, we demonstrate that partial reduction of the WO3 to WO2.5 results in the appearance of new gap states just below the conduction band edge in the previously forbidden gap. The new gap states are proposed to act as a reservoir of donor electrons for enhanced injection and transport to the polymer LUMO and decrease the effective cathode workfunction. Moreover, when a thin tungsten oxide film in its fully oxidized state (WO3) is inserted at the ITO anode/polymer interface, further improvement in device characteristics was achieved. Since both fully oxidized and partially reduced tungsten oxide layers can be deposited in the same chamber with well controlled morphology, this work paves the way for the facile fabrication of efficient and stable Hy‐OLEDs with excellent reproducibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号