首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
化学工业   4篇
建筑科学   6篇
能源动力   5篇
水利工程   1篇
无线电   5篇
一般工业技术   7篇
自动化技术   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1994年   2篇
  1989年   1篇
  1985年   4篇
  1983年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
Studies have shown that a large geographic spread of installed capacity can reduce wind power variability and smooth production. This could be achieved by using electricity interconnections and storage systems. However, interconnections and storage are not totally flexible, so it is essential to understand the wind power correlation in order to address power system constraints in systems with large and growing wind power penetrations. In this study, the spatial and temporal correlation of wind power generation across several European Union countries was examined to understand how wind ‘travels’ across Europe. Three years of historical hourly wind power generation data from 10 countries were analysed. The results of the analysis were then compared with two other studies focused on the Nordic region and the USA. The findings show that similar general correlation characteristics do exist between European country pairs. This is of particular importance when planning and operating interconnector flows, storage optimization and cross‐border power trading. Copyright © 2017 The Authors Wind Energy Published by John Wiley & Sons Ltd  相似文献   
22.
23.
This paper compares two mean reaction rate closures for turbulent reacting flow: the Stochastic Fields (SF) method and the Direct Quadrature Method of Moments using the Interaction by Exchange with the Mean micromixing model (DQMoM-IEM). The methods have many common features and have received significant attention in recent literature, yet have not been systematically compared. We present both methods in the same mathematical framework and compare their numerical performance. In addition, we introduce antithetic sampling as a variance reduction technique to increase the efficiency of the SF algorithm. We extend the methodology to take advantage of this development and show details of the implementation of each method in a commercial computational fluid dynamics code. We present a systematic investigation and consider both axisymmetric and 3D formulations of a problem known from the literature. DQMoM-IEM showed excellent agreement with experimental and transported probability density function data. SF gave reasonable agreement, but retained a minor grid-dependence not seen with DQMoM-IEM and did not fully resolve the sub-grid segregation of the species. The antithetic sampling was demonstrated to significantly increase the efficiency of the axisymmetric SF cases.  相似文献   
24.
25.
Browell EV  Ismail S  Shipley ST 《Applied optics》1985,24(17):2827-2836
The differential absorption lidar (DIAL) technique generally assumes that atmospheric optical scattering is the same at the two laser wavelengths used in the DIAL measurement of a gas concentration profile. Errors can arise in this approach when the wavelengths are significantly separated, and there is a range dependence in the aerosol scattering distribution. This paper discusses the errors introduced by large DIAL wavelength separations and spatial inhomogeneity of aerosols in the atmosphere. A Bernoulli solution for determining the relative distribution of aerosol backscattering in the UV region is presented, and scattering ratio boundary values for these solutions are discussed. The results of this approach are used to derive a backscatter correction to the standard DIAL analysis method. It is shown that for the worst cases of severe range dependence in aerosol backscattering, the residual errors in the corrected DIAL O3 measurements were <10 ppbv for DIAL wavelengths at 286 and 300 nm.  相似文献   
26.
An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.  相似文献   
27.
A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two étalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-étalon laser system. High spectral purity (> 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by usingthis laser, which has a finite linewidth of 0.02 cm(-1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(-1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity étalons is presented, and a closed-loop computer control for active stabilization of the two intracavity étalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (≈ 1.5 h) of less than 0.7 pm in the laboratory.  相似文献   
28.
Wind power forecast evaluation is of key importance for forecast provider selection, forecast quality control, and model development. While forecasts are most often evaluated based on squared or absolute errors, these error measures do not always adequately reflect the loss functions and true expectations of the forecast user, neither do they provide enough information for the desired evaluation task. Over the last decade, research in forecast verification has intensified, and a number of verification frameworks and diagnostic tools have been proposed. However, the corresponding literature is generally very technical and most often dedicated to forecast model developers. This can make forecast users struggle to select the most appropriate verification tools for their application while not fully appraising subtleties related to their application and interpretation. This paper revisits the most common verification tools from a forecast user perspective and discusses their suitability for different application examples as well as evaluation setup design and significance of evaluation results.  相似文献   
29.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号