首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49450篇
  免费   2685篇
  国内免费   155篇
电工技术   708篇
综合类   65篇
化学工业   10593篇
金属工艺   2137篇
机械仪表   3241篇
建筑科学   1099篇
矿业工程   25篇
能源动力   2111篇
轻工业   3887篇
水利工程   271篇
石油天然气   88篇
武器工业   2篇
无线电   7835篇
一般工业技术   10662篇
冶金工业   3881篇
原子能技术   658篇
自动化技术   5027篇
  2024年   50篇
  2023年   570篇
  2022年   870篇
  2021年   1483篇
  2020年   1069篇
  2019年   1176篇
  2018年   1429篇
  2017年   1411篇
  2016年   1750篇
  2015年   1294篇
  2014年   2088篇
  2013年   3006篇
  2012年   3265篇
  2011年   3889篇
  2010年   2814篇
  2009年   2921篇
  2008年   2811篇
  2007年   2185篇
  2006年   2031篇
  2005年   1724篇
  2004年   1571篇
  2003年   1513篇
  2002年   1331篇
  2001年   1134篇
  2000年   996篇
  1999年   928篇
  1998年   1558篇
  1997年   991篇
  1996年   803篇
  1995年   557篇
  1994年   461篇
  1993年   406篇
  1992年   290篇
  1991年   274篇
  1990年   258篇
  1989年   241篇
  1988年   205篇
  1987年   168篇
  1986年   119篇
  1985年   115篇
  1984年   92篇
  1983年   63篇
  1982年   38篇
  1981年   39篇
  1980年   30篇
  1979年   31篇
  1978年   30篇
  1977年   38篇
  1976年   61篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
Kim  Kihyeun  Son  Myungwoo  Pak  Yusin  Chee  Sang-Soo  Auxilia  Francis Malar  Lee  Byung-Kee  Lee  Sungeun  Kang  Sun Kil  Lee  Chaedeok  Lee  Jeong Soo  Kim  Ki Kang  Jang  Yun Hee  Lee  Byoung Hun  Jung  Gun-Young  Ham  Moon-Ho 《Nano Research》2018,11(7):3957-3957
Nano Research - The order of the authors in the original version of this article was unfortunately incorrect on the first page and the first page of the ESM. Instead of Myungwoo Son1, Yusin Pak1,...  相似文献   
882.
Advances in metal-organic frameworks (MOFs) resulted in significant contributions to diverse applications such as carbon capture, gas storage, heat transformation and separation along with emerging applications toward catalysis, medical imaging, drug delivery, and sensing. The unique in situ and ex situ structural features of MOFs can be tailored by conceptual selection of the organic (e.g., ligand) and inorganic (e.g., metal) components. Here, we provide a comprehensive review on the synthesis and characterization of MOFs, particularly with respect to controlling their size and morphology. A better understanding of the specific size and morphological parameters of MOFs will help initiate a new era for their real-world applications. Most importantly, this assessment will help develop novel synthesis methods for MOFs and their hybrid/porous materials counterparts with considerably improved properties in targeted applications.
  相似文献   
883.
Polycrystalline silicon (poly-Si) is widely used as a gate layer in integrated circuits, transistors, and channels through nanofabrication. Nanoremoval and roughness control are required for nanomanufacturing of various electronic devices. Herein, a nanoscale removal method is developed to overcome the limitations of microcracks, complex procedures, and time-consuming conventional fabrication and lithography methods. The method is implemented with a mechanically induced poly-Si phase transition using atomic force microscope (AFM). Mechanical force induces the covalent bonds between silicon and fluorine atoms which cause the phase transition of poly-Si. Then, the bond structure of the Si molecules is weakened and selectively removed by nano-Newton-scale force using AFM. A selective nanoscale removal with roughness control is implemented in 0.5 mM TBAF solution after mechanical force (43.58–58.21 nN) is applied. By the magnitude of nano-Newton force, the removal depth of poly-Si is controlled from 2.66 to 21.52 nm. Finally, the nanoscale fabrication on poly-Si wafer is achieved. The proposed nanoremoval mechanism is a simple fabrication method that provides selective, nanoscale, and highly efficient removal with roughness control.  相似文献   
884.
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   
885.
A small and medium enterprises (SMEs) manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities. The optimal job shop scheduling is generated by utilizing the scheduling system of the platform, and a minimum production time, i.e., makespan decides whether the scheduling is optimal or not. This scheduling result allows manufacturers to achieve high productivity, energy savings, and customer satisfaction. Manufacturing in Industry 4.0 requires dynamic, uncertain, complex production environments, and customer-centered services. This paper proposes a novel method for solving the difficulties of the SMEs manufacturing by applying and implementing the job shop scheduling system on a SMEs manufacturing platform. The primary purpose of the SMEs manufacturing platform is to improve the B2B relationship between manufacturing companies and vendors. The platform also serves qualified and satisfactory production opportunities for buyers and producers by meeting two key factors: early delivery date and fulfillment of processing as many orders as possible. The genetic algorithm (GA)-based scheduling method results indicated that the proposed platform enables SME manufacturers to obtain optimized schedules by solving the job shop scheduling problem (JSSP) by comparing with the real-world data from a textile weaving factory in South Korea. The proposed platform will provide producers with an optimal production schedule, introduce new producers to buyers, and eventually foster relationships and mutual economic interests.  相似文献   
886.
The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is easily accessible to people around the globe. Nonetheless, this is not eminently efficacious considering human inspection of medical images can yield a high false positive rate. Ineffective and inefficient diagnosis is a crucial reason for such a high mortality rate for this malady. However, the conspicuous advancements in deep learning and artificial intelligence have stimulated the development of exceedingly precise diagnosis systems. The development and performance of these systems rely prominently on the data that is used to train these systems. A standard problem witnessed in publicly available medical image datasets is the severe imbalance of data between different classes. This grave imbalance of data can make a deep learning model biased towards the dominant class and unable to generalize. This study aims to present an end-to-end convolutional neural network that can accurately differentiate lung nodules from non-nodules and reduce the false positive rate to a bare minimum. To tackle the problem of data imbalance, we oversampled the data by transforming available images in the minority class. The average false positive rate in the proposed method is a mere 1.5 percent. However, the average false negative rate is 31.76 percent. The proposed neural network has 68.66 percent sensitivity and 98.42 percent specificity.  相似文献   
887.
Despite the planned installation and operations of the traditional IEEE 802.11 networks, they still experience degraded performance due to the number of inefficiencies. One of the main reasons is the received signal strength indicator (RSSI) association problem, in which the user remains connected to the access point (AP) unless the RSSI becomes too weak. In this paper, we propose a multi-criterion association (WiMA) scheme based on software defined networking (SDN) in Wi-Fi networks. An association solution based on multi-criterion such as AP load, RSSI, and channel occupancy is proposed to satisfy the quality of service (QoS). SDN having an overall view of the network takes the association and reassociation decisions making the handoffs smooth in throughput performance. To implement WiMA extensive simulations runs are carried out on Mininet-NS3-Wi-Fi network simulator. The performance evaluation shows that the WiMA significantly reduces the average number of retransmissions by 5%–30% and enhances the throughput by 20%–50%, hence maintaining user fairness and accommodating more wireless devices and traffic load in the network, when compared to traditional client-driven (CD) approach and state of the art Wi-Balance approach.  相似文献   
888.
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN),  NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h−1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2GCN significantly decreases the activation energy barrier for PO ring-opening from 50–60 to 4.903 kcal mol−1. Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while  NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h−1 of CO2 with PC production of 10.2 ton h−1. Techno-economic assessment profit from Mo2GCN is estimated to be 60.39 million USD year−1 at a catalyst loss rate of 0.01 wt% h−1.  相似文献   
889.
A variety of wound healing platforms have been proposed to alleviate the hypoxic condition and/or to modulate the immune responses for the treatment of chronic wounds in diabetes. However, these platforms with the passive diffusion of therapeutic agents through the blood clot result in the relatively low delivery efficiency into the deep wound site. Here, a microalgae-based biohybrid microrobot for accelerated diabetic wound healing is developed. The biohybrid microrobot autonomously moves at velocity of 33.3 µm s−1 and generates oxygen for the alleviation of hypoxic condition. In addition, the microrobot efficiently bound with inflammatory chemokines of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) for modulating the immune responses. The enhanced penetration of microrobot is corroborated by measuring fibrin clots in biomimetic wound using microfluidic devices and the enhanced retention of microrobot is confirmed in the real wounded mouse skin tissue. After deposition on the chronic wound in diabetic mice without wound dressing, the wounds treated with microrobots are completely healed after 9 days with the significant decrease of inflammatory cytokines below 31% of the control level and the upregulated angiogenesis above 20 times of CD31+ cells. These results confirm the feasibility of microrobots as a next-generation platform for diabetic wound healing.  相似文献   
890.
Hemispherical image sensors simplify lens designs, reduce optical aberrations, and improve image resolution for compact wide-field-of-view cameras. To achieve hemispherical image sensors, organic materials are promising candidates due to the following advantages: tunability of optoelectronic/spectral response and low-temperature low-cost processes. Here, a photolithographic process is developed to prepare a hemispherical image sensor array using organic thin film photomemory transistors with a density of 308 pixels per square centimeter. This design includes only one photomemory transistor as a single active pixel, in contrast to the conventional pixel architecture, consisting of select/readout/reset transistors and a photodiode. The organic photomemory transistor, comprising light-sensitive organic semiconductor and charge-trapping dielectric, is able to achieve a linear photoresponse (light intensity range, from 1 to 50 W m−2), along with a responsivity as high as 1.6 A W−1 (wavelength = 465 nm) for a dark current of 0.24 A m−2 (drain voltage = −1.5 V). These observed values represent the best responsivity for similar dark currents among all the reported hemispherical image sensor arrays to date. A transfer method was further developed that does not damage organic materials for hemispherical organic photomemory transistor arrays. These developed techniques are scalable and are amenable for other high-resolution 3D organic semiconductor devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号