首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1839篇
  免费   46篇
  国内免费   2篇
电工技术   8篇
综合类   3篇
化学工业   318篇
金属工艺   18篇
机械仪表   13篇
建筑科学   88篇
矿业工程   3篇
能源动力   26篇
轻工业   181篇
水利工程   12篇
石油天然气   4篇
无线电   90篇
一般工业技术   216篇
冶金工业   715篇
原子能技术   6篇
自动化技术   186篇
  2022年   28篇
  2021年   55篇
  2020年   25篇
  2019年   29篇
  2018年   25篇
  2017年   20篇
  2016年   25篇
  2015年   25篇
  2014年   45篇
  2013年   107篇
  2012年   76篇
  2011年   70篇
  2010年   63篇
  2009年   56篇
  2008年   78篇
  2007年   66篇
  2006年   61篇
  2005年   55篇
  2004年   49篇
  2003年   24篇
  2002年   53篇
  2001年   42篇
  2000年   36篇
  1999年   40篇
  1998年   39篇
  1997年   31篇
  1996年   38篇
  1995年   29篇
  1994年   39篇
  1993年   46篇
  1992年   45篇
  1991年   11篇
  1990年   37篇
  1989年   35篇
  1988年   34篇
  1987年   31篇
  1986年   23篇
  1985年   32篇
  1984年   32篇
  1983年   21篇
  1982年   15篇
  1981年   17篇
  1980年   15篇
  1979年   26篇
  1978年   16篇
  1977年   13篇
  1976年   17篇
  1975年   20篇
  1973年   9篇
  1972年   12篇
排序方式: 共有1887条查询结果,搜索用时 15 毫秒
21.
Information regarding the propagation media is typically gathered by conducting physical experiments, measuring and processing the corresponding data to obtain channel characteristics. When this propagation media is human body, for example in case of medical implants, then this approach might not be practical. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe RF propagation from medical implants inside a human body. This virtual environment allows for more natural interaction between experts with different backgrounds, such as engineering and medical sciences. Here, we show how this platform has been used to determine channel models for medical implant communication systems.  相似文献   
22.
This paper presents two novel frameworks for session admission control and resource reservation in the context of next generation mobile and cellular networks. We also devised a special scheme that avoids per-user reservation signaling overhead in order to meet scalability requirements needed for next generation multi-access networks. The first proposal, Distributed Call Admission Control with Aggregate Resource Reservation (VR), uses mobility prediction based on mobile positioning system location information and takes into account the expected bandwidth to be used by calls handing off to and from neighboring cells within a configurable estimation time window. In conjunction, a novel concept called virtual reservation has been devised to prevent per-user reservation. Our second proposal, Local Call Admission Control and Time Series-based Resource Reservation, takes into account the expected bandwidth to be used by calls handed off from neighboring cells based only on local information stored into the current cell a user is seeking admission to. To this end, we suggest the use of two time series-based models for predicting handoff load: the Trigg and Leach (TL), which is an adaptive exponential smoothing technique, and Autoregressive Integrated Moving Average (ARIMA) that uses the Box and Jenkins methodology. It is worth to emphasize that the use of bandwidth prediction based on ARIMA technique still exist for wireless networks. The novelty of our approach is to build an adaptive framework based on ARIMA technique that takes into account the measured handoff dropping probability in order to tuning the prediction time window size so increasing the prediction accuracy. The proposed schemes are compared through simulations with the fixed guard channel (GC) and other optimized dynamic reservation-based proposals present in the literature. The results show that our schemes outperform many others and that the simpler local proposal based on TL can grant nearly similar levels of handoff dropping probability as compared to those from more the complex distributed approach.  相似文献   
23.
We extend the well-known scalar image bilateral filtering technique to diffusion tensor magnetic resonance images (DTMRI). The scalar version of bilateral image filtering is extended to perform edge-preserving smoothing of DT field data. The bilateral DT filtering is performed in the Log-Euclidean framework which guarantees valid output tensors. Smoothing is achieved by weighted averaging of neighboring tensors. Analogous to bilateral filtering of scalar images, the weights are chosen to be inversely proportional to two distance measures: The geometrical Euclidean distance between the spatial locations of tensors and the dissimilarity of tensors. We describe the noniterative DT smoothing equation in closed form and show how interpolation of DT data is treated as a special case of bilateral filtering where only spatial distance is used. We evaluate different recent DT tensor dissimilarity metrics including the Log-Euclidean, the similarity-invariant Log-Euclidean, the square root of the J-divergence, and the distance scaled mutual diffusion coefficient. We present qualitative and quantitative smoothing and interpolation results and show their effect on segmentation, for both synthetic DT field data, as well as real cardiac and brain DTMRI data.  相似文献   
24.
In the search for nontoxic alternatives to lead‐halide perovskites, bismuth oxyiodide (BiOI) has emerged as a promising contender. BiOI is air‐stable for over three months, demonstrates promising early‐stage photovoltaic performance and, importantly, is predicted from calculations to tolerate vacancy and antisite defects. Here, whether BiOI tolerates point defects is experimentally investigated. BiOI thin films are annealed at a low temperature of 100 °C under vacuum (25 Pa absolute pressure). There is a relative reduction in the surface atomic fraction of iodine by over 40%, reduction in the surface bismuth fraction by over 5%, and an increase in the surface oxygen fraction by over 45%. Unexpectedly, the Bi 4f7/2 core level position, Fermi level position, and valence band density of states of BiOI are not significantly changed. Further, the charge‐carrier lifetime, photoluminescence intensity, and the performance of the vacuum‐annealed BiOI films in solar cells remain unchanged. The results show BiOI to be electronically and optoelectronically robust to percent‐level changes in surface composition. However, from photoinduced current transient spectroscopy measurements, it is found that the as‐grown BiOI films have deep traps located ≈0.3 and 0.6 eV from the band edge. These traps limit the charge‐carrier lifetimes of BiOI, and future improvements in the performance of BiOI photovoltaics will need to focus on identifying their origin. Nevertheless, these deep traps are three to four orders of magnitude less concentrated than the surface point defects induced through vacuum annealing. The charge‐carrier lifetimes of the BiOI films are also orders of magnitude longer than if these surface defects were recombination active. This work therefore shows BiOI to be robust against processing conditions that lead to percent‐level iodine‐, bismuth‐, and oxygen‐related surface defects. This will simplify and reduce the cost of fabricating BiOI‐based electronic devices, and stands in contrast to the defect‐sensitivity of traditional covalent semiconductors.  相似文献   
25.
Bone formation (osteogenesis) is a complex process in which cellular differentiation and the generation of a mineralized organic matrix are synchronized to produce a hybrid hierarchical architecture. To study the mechanisms of osteogenesis in health and disease, there is a great need for functional model systems that capture in parallel, both cellular and matrix formation processes. Stem cell-based organoids are promising as functional, self-organizing 3D in vitro models for studying the physiology and pathology of various tissues. However, for human bone, no such functional model system is yet available. This study reports the in vitro differentiation of human bone marrow stromal cells into a functional 3D self-organizing co-culture of osteoblasts and osteocytes, creating an organoid for early stage bone (woven bone) formation. It demonstrates the formation of an organoid where osteocytes are embedded within the collagen matrix that is produced by the osteoblasts and mineralized under biological control. Alike in in vivo osteocytes, the embedded osteocytes show network formation and communication via expression of sclerostin. The current system forms the most complete 3D living in vitro model system to investigate osteogenesis, both in physiological and pathological situations, as well as under the influence of external triggers (mechanical stimulation, drug administration).  相似文献   
26.

Recent decades have witnessed the birth of major applications of wireless communication technology, further supported by the increasing capabilities of portable devices, low cost and ubiquitous presence. Despite radio technology diversity, a great deal of existing research focuses on a single and isolated wireless technology at a time, where homogeneous elements are identified by IP addresses. This work presents a heterogeneous technology routing (HTR) Framework, targeted towards scenarios where the heterogeneity of devices and networking technologies is present. Our contribution is many fold. It consists of a framework, which encompasses a process for bootstrapping networks, a routing protocol capable of dealing with multiple network interfaces, and a tuning with multipath extensions. We evaluate the performance of the bootstrap, routing and multipath mechanisms by way of simulation and an actual testbed implementation. The multipath evaluation simulates HTR networks with WiMAX, 3GPP LTE and Wi-Fi support. Results show that our proposal can effectively improve the data delivery ratio for ad-hoc networks and that it reduces the end-to-end delay without major impact on network energy consumption. As part of HTR tuning, we investigate next the impacts of tuning the HELLO refresh interval timer on route convergence and its subsequent energy consumption reduction during this phase. We also compare our tuned HTR with the widely used optimized link state routing protocol. Results show that varying the HELLO refresh interval can improve the convergence time and reduce the energy consumption without major impact on network behavior. Our proposal also includes a new distributed address allocation algorithm, namely, the dynamic node configuration protocol (DNCP). This paper conducts a comparative analysis between the Prime, Prophet and the DNCP schemes using static and dynamic topologies in terms of network setup time, energy consumption and control message overhead. Results show that the DNCP had a lower battery power consumption and less control message overhead while it slightly suffers with regard to setup.

  相似文献   
27.
A novel buffering method is presented to improve the stability of zinc oxide processed in aqueous solutions. By buffering the aqueous solution with a suitable quantity of sacrificial zinc species, the dissolution of functional zinc oxide structures and the formation of unwanted impurities can be prevented. The method is demonstrated for ZnO films and nanowires processed in aqueous solutions used for the selective etching of mesoporous anodic alumina templates and the electrochemical deposition of Cu2O. In both cases, improved ZnO stability is observed with the buffering method. ZnO‐Cu2O heterojunction solar cells (bilayer and nanowire cells) synthesized using both traditional and buffered deposition methods are characterized by impedance spectroscopy and solar simulation measurements. Buffering the Cu2O deposition solution is found to reduce unwanted recombination at the heterojunction and improve the photovoltaic performance.  相似文献   
28.
The combination of cell microenvironment control and real‐time monitoring of cell signaling events can provide key biological information. Through precise multipatterning of gold nanoparticles (GNPs) around cells, sensing and actuating elements can be introduced in the cells' microenviroment, providing a powerful substrate for cell studies. In this work, a combination of techniques are implemented to engineer complex substrates for cell studies. Alternating GNPs and bioactive areas are created with micrometer separation by means of a combination of vacumm soft‐lithography of GNPs and protein microcontract printing. Instead of conventional microfluidics that need syringe pumps to flow liquid in the microchannels, degas driven flow is used to fill dead‐end channels with GNP solutions, rendering the fabrication process straightforward and accessible. This new combined technique is called Printing and Vacuum lithography (PnV lithography). By using different GNPs with various organic coating ligands, different macroscale patterns are obtained, such as wires, supercrystals, and uniformly spread nanoparticle layers that can find different applications depending on the need of the user. The application of the system is tested to pattern a range of mammalian cell lines and obtain readouts on cell viability, cell morphology, and the presence of cell adhesive proteins.  相似文献   
29.
On‐demand and long‐term delivery of drugs are common requirements in many therapeutic applications, not easy to be solved with available smart polymers for drug encapsulation. This work presents a fundamentally different concept to address such scenarios using a self‐replenishing and optogenetically controlled living material. It consists of a hydrogel containing an active endotoxin‐free Escherichia coli strain. The bacteria are metabolically and optogenetically engineered to secrete the antimicrobial and antitumoral drug deoxyviolacein in a light‐regulated manner. The permeable hydrogel matrix sustains a viable and functional bacterial population and permits diffusion and delivery of the synthesized drug to the surrounding medium at quantities regulated by light dose. Using a focused light beam, the site for synthesis and delivery of the drug can be freely defined. The living material is shown to maintain considerable levels of drug production and release for at least 42 days. These results prove the potential and flexibility that living materials containing engineered bacteria can offer for advanced therapeutic applications.  相似文献   
30.
Un-doped and Co-doped ZnO nanoparticles (NPs) with different weight ratios (0.5, 1.0, 1.5, and 2.0 wt% of Co) were synthesized by a facile and rapid microwave-assisted combustion method using urea as a fuel. The prepared NPs were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). XRD patterns refined by the Rietveld method indicated that Co-doped ZnO had a single pure phase with wurtzite structure suggesting that Co^2+ ions would occupy Zn^2+ ionic sites within the ZnO crystal lattice. Interestingly, the morphology was found to convert substantially from grains to nanoparticles with close-packed periodic array of hexagonal-like shape and then into randomly distributed spherical NPs with the variation of Co-content. The optical band gap estimated using DRS was found to be red-shifted from 3.22 eV for the un-doped ZnO NPs then decrease up to 2.88 eV with increasing Co-content. PL spectra showed a strong green emission band thus confirming the formation of pure single ZnO phase. Magnetic studies showed that Co-doped ZnO NPs exhibited room temperature ferromagnetism (RTFM) and that the saturation magnetization attained a maximum value of 2.203 × 10^-3 emu/g for the highest Co-content. The antibacterial studies performed against a set of bacterial strains showed that the 2.0 wt% Co-doped ZnO NPs possessed a greater antibacterial effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号