首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   51篇
  国内免费   3篇
电工技术   4篇
化学工业   74篇
金属工艺   5篇
机械仪表   85篇
建筑科学   4篇
能源动力   30篇
轻工业   130篇
水利工程   3篇
石油天然气   4篇
无线电   52篇
一般工业技术   90篇
冶金工业   10篇
原子能技术   7篇
自动化技术   75篇
  2024年   7篇
  2023年   9篇
  2022年   64篇
  2021年   58篇
  2020年   45篇
  2019年   70篇
  2018年   57篇
  2017年   33篇
  2016年   21篇
  2015年   16篇
  2014年   25篇
  2013年   36篇
  2012年   33篇
  2011年   26篇
  2010年   10篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1976年   1篇
排序方式: 共有573条查询结果,搜索用时 15 毫秒
21.
Phase change materials (PCMs) are widely being used in thermal energy storage systems for solar engineering, building materials, heat pumps, spacecraft, and in textile field especially smart and technical textiles. There are large numbers of organic and inorganic PCMs that possess a wide range of melting and solidifying temperature which attracts researcher’s attention for their applications in different fields. This review paper summarizes the investigation and analysis of the available organic and inorganic PCMs, different encapsulating techniques, characterization techniques, incorporation into fiber and pad application on textiles with practical applications in the field of smart textiles.  相似文献   
22.
Polyphenols as phytochemicals have gained significant importance owing to several associated health benefits with regard to lifestyle diseases and oxidative stress. To date, the development of a single standard method for efficient and rapid extraction of polyphenols from plant matrices has remained a challenge due to the inherent limitations of various conventional extraction methods. The exploitation of polyphenols as bioactive compounds at various commercial levels has motivated scientists to explore more eco‐friendly, efficient, and cost‐effective extraction techniques, based on a green extraction approach. The current review aims to provide updated technical information about extraction mechanisms, their advantages and disadvantages, and factors affecting efficiencies, and also presents a comparative overview of applications of the following modern green extraction techniques—supercritical fluid extraction, ultrasound‐assisted extraction, microwave‐assisted extraction, pressurized liquid extraction, and pressurized hot water extraction—as alternatives to conventional extraction methods for polyphenol extraction. These techniques are proving to be promising for the extraction of thermolabile phenolic compounds due to their advantages over conventional, time‐consuming, and laborious extraction techniques, such as reduced solvent use and time and energy consumption and higher recovery rates with lower operational costs. The growing interest in plant‐derived polyphenols prompts continual search for green and economically feasible modern extraction techniques. Modern green extraction techniques represent promising approaches by virtue of overcoming current limitations to the exploitation of polyphenols as bioactive compounds to explore their wide‐reaching applications on an industrial scale and in emerging global markets. Future research is needed in order to remove the technical barriers to scale‐up the processes for industrial needs by increasing our understanding and improving the design of modern extraction operations.  相似文献   
23.
24.
Thermoluminescence (TL) analysis was applied to identify gamma-irradiated garlic powder in Korean barbeque sauce before and after pasteurization (85 °C, 30 min), when blended in different ratios (1%, 3%, and 5%). The sauce sample with nonirradiated garlic powder gave a background glow curve. However, the sample blended with irradiated ingredient (1 and 10 kGy) showed typical TL glow curves at temperatures of 150 to 200 °C. The identification properties of sauce samples were more influenced by blending ratios than by irradiation doses, showing that 3% and 5% added samples produced glow curves at 150 to 250 °C. After pasteurization of the samples containing the irradiated ingredient, TL glow intensity decreased but did not change its shape or temperature range. As a result, the pasteurization of Barbeque sauces containing irradiated ingredients had reduced TL glow intensity, but the shape and temperature range of glow curve were still able to provide information required for confirming irradiation treatment. PRACTICAL APPLICATION: To monitor the irradiated food in international market, thermoluminescence (TL) analysis is considered most promising identification technique because of its sensitivity and long-term stability. In this study the applicability of TL analysis to detect an irradiated ingredient (garlic powder) added in low quantity to a food matrix (sauce) was investigated. The effect of processing (pasteurization) on TL results was also evaluated.  相似文献   
25.
26.
1H nuclear magnetic resonance (NMR) was applied for the metabolic profiling of grapes from three Portuguese cultivars including ‘Trincadeira’, ‘Aragonês’, and ‘Touriga Nacional’, at four developmental stages. Two kinds of extraction methods including deuterated NMR solvent extraction and solid phase extraction (SPE) were used for the metabolomic analysis and all the metabolites detected in 1H NMR were elucidated by two-dimensional NMR techniques as well as the in-house NMR chemical shift database. Multivariate data analyses were also performed to identify overall metabolic differences. Trincadeira was found different from the other two cultivars, having low phenolic contents as compared to other cultivars. The initial stages showed comparatively high phenolics and organic acid contents like caftaric and malic acid while the later stages showed higher glucose and fructose levels. Veraison was found to be a metabolically critical stage of berry development. On the basis of these findings distribution of metabolites among different cultivars at different developmental stages is discussed.  相似文献   
27.
28.
Polymeric membranes are extensively used for gas separations but their performance is limited by the upper bound trade‐off discovered by Robeson in 1991. Among the attractive modifications available to increase the performance of polymeric membranes, polymer blending is a unique technique because it offers a time‐ and cost‐effective method of tuning the properties of membranes. A variety of polymer blends has been explored in recent years. The application of polymer blends in gas separation membranes is described by critically analyzing the performance of polymer blend membranes. Polymer blend membranes of different polymer pairs are reviewed and evaluated in terms of phase behavior, permeability, and selectivity.  相似文献   
29.
ZnO nanorods were synthesized using a low-cost sol-gel spin coating technique. The synthesized nanorods were consisted of hexagonal phase having c-axis orientation. SEM images reflected perpendicular ZnO nanorods forming bridging network in some areas. The impact of different hydrogen concentrations on the Pd-sensitized ZnO nanorods was investigated using an impedance spectroscopy (IS). The grain boundary resistance (Rgb) significantly contributed to the sensing properties of hydrogen gas. The boundary resistance was decreased from 11.95 to 3.765 kΩ when the hydrogen concentration was increased from 40 to 360 ppm. IS gain curve showed a gain of 6.5 for 360 ppm of hydrogen at room temperature. Nyquist plot showed reduction in real part of impedance at low frequencies on exposure to different concentrations of hydrogen. Circuit equivalency was investigated by placing capacitors and resistors to identify the conduction mechanism according to complex impedance Nyquist plot. Variations in nanorod resistance and capacitance in response to the introduction of various concentrations of hydrogen gas were obtained from the alternating current impedance spectra.  相似文献   
30.
In this research work, novel polyurethanes (PUs) based on blends of curcumin/1,4-butane diol (BDO) by varying the structure of diisocyanates were prepared following step growth polymerization. Structural study of blends and various diisocyanates based PU through Fourier Transform Infrared (FTIR) spectroscopy confirmed the incorporation of curcumin into the backbone of the PU. The scanning electron microscopic (SEM) study confirmed the well dispersion of incorporated curcumin and homogeneity of surface of synthesized samples. The SEM results also indicated that surface morphology of synthesized samples much dependent on diisocynates structure. Moreover SEM images inferred that phase separation is more pronounced in aromatic diisocyanate based PU. The anti-bacterial and anti-fungal tests were performed against different strains in order to determine the biocompatibility of the curcumin based PU. The antimicrobial activity results revealed that the material having aromatic diisocyanate are more biocompatible than the aliphatic diisocyanates in the PU structure. On the whole, this work is actually a step towards the generation of novel biocompatible materials preferably useful for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号