首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   40篇
  国内免费   3篇
电工技术   4篇
化学工业   150篇
金属工艺   4篇
机械仪表   12篇
建筑科学   9篇
矿业工程   1篇
能源动力   29篇
轻工业   59篇
水利工程   1篇
石油天然气   9篇
无线电   25篇
一般工业技术   48篇
冶金工业   7篇
原子能技术   3篇
自动化技术   50篇
  2024年   3篇
  2023年   3篇
  2022年   22篇
  2021年   21篇
  2020年   26篇
  2019年   43篇
  2018年   51篇
  2017年   44篇
  2016年   28篇
  2015年   14篇
  2014年   22篇
  2013年   27篇
  2012年   18篇
  2011年   16篇
  2010年   18篇
  2009年   15篇
  2008年   9篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1994年   1篇
  1992年   2篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
401.
Dielectric properties of beef biceps femoris muscle were recorded during heating (5-85°C) to assess their linkage to phase changes monitored by differential scanning calorimetry (DSC) and rheology. DSC indicated endotherms between 56 and 81°C corresponding to denaturation of actin, collagen and myosin. Matching changes in dielectric properties (dielectric constant (ε') and loss factor (ε″)) were noted at radio and/or microwave frequencies though the nature of the change differed depending upon frequency. The main observation in ε' was an increase above 65-66°C, most likely due to fluid release on collagen denaturation. This fluid plus liquid from myosin denaturation most likely solvated ions freed during myosin denaturation which manifested as an ε″ increase. However, it must be noted that meat structural protein denaturation is compounded with physical shrinkage which can also influence dielectric properties. Rheological parameters of beef muscle heated from 5 to 85°C also displayed marked changes relating to structural protein denaturation.  相似文献   
402.
Alginate-based edible films containing 1% (wt/vol) essential oils of Spanish oregano, Chinese cinnamon, or savory were immersed in 2% (wt/vol) or 20% (wt/vol) CaCl2 solution and then applied to beef muscle slices to control the growth of Escherichia coli O157:H7 and Salmonella Typhimurium. Whole beef muscle surfaces were inoculated with one of these strains at 10(3) CFU/cm2. During the 5 days of storage, samples of meat were obtained periodically for microbiological analysis. The availability of active compounds from essential oils present in films was evaluated by determination of total phenolic compounds for oregano- and savory-based films and of total aldehydes for cinnamon-based films during storage. After 5 days of storage, films containing oregano or cinnamon essential oils were the most effective against Salmonella Typhimurium regardless of the type of pretreatment used (2 or 20% CaCl2). During the same period, meat inoculated with E. coli O157:H7 and coated with films treated with 2% CaCl2 had significantly fewer bacteria (P < or = 0.05) when oregano-based films were used than when cinnamon- and savory-based films were used. The E. coli O157:H7 concentration was higher at the end of the storage period when films were pretreated with 20% CaCl2. Evaluation of the active compounds in films revealed that availability in oregano- and savory-based films was significantly more important (P < or = 0.05) than that in cinnamon-based films regardless of the type of pretreatment used (2 or 20% CaCl2). At the end of storage, release rates of 40, 60, and 77% were noted in oregano-, savory-, and cinnamon-based films in 2% CaCl2 and rates of 65, 62, and 90% were noted in the same films in 20% CaCl2.  相似文献   
403.
Ceria (CeO2) nanoparticles were synthesized using the microwave-assisted heating technique and employed as a sorbent for preconcentration of trace amounts of Hg(II) ions from aqueous solutions for the first time. The analysis of mercury was performed by cold vapor atomic absorption spectrometry (CV-AAS). The characteristics of nanoparticles were assessed using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Experimental parameters influencing the extraction procedure recovery were thoroughly investigated. Under the optimized experimental conditions, the calibration curve was linear in the range of 0.035–0.8 µg/L of mercury. The method was validated by analysis of a certified reference material.  相似文献   
404.
405.
Mousavi  Samira  Mansoori  Yagoub  Nuri  Ayat  Esquivel  Dolores  Navarro  Mª Angeles 《Catalysis Letters》2022,152(11):3465-3478
Catalysis Letters - A nitrogen ligand, i.e. 1,3-di-(o-aminophenoxy)-2-propyl propargyl ether (DPPE), has been synthesized and characterized. Magnetic mesoporous silica composite (MNP@SiO2-SBA) was...  相似文献   
406.
Over the last decade, in pursuit to provide suitable alternatives for power supplies of medical devices in regenerative medicine, extensive research on nanogenerators has been developed. Such devices can overcome current commercial battery challenges, including intense heat-on-body complications due to the electrical current during therapeutic usage, leading to protein denaturation, cell structure destruction, and even cell necrosis. In addition, these traditional batteries contain a bulky and heavy structure that prevents them from providing sustainable on body biomedical therapeutic intervention. Furthermore, advantages such as wide-range biocompatible and biodegradable materials, lightweight, and sufficient stretchability for device construction can minimize the side effects of implantable devices, including inflammation or toxicity, as well as eliminate secondary surgery to replace or remove batteries. Triboelectric nanogenerators (TENGs) are associated with harvesting mechanical energy in various forms, among which human body motions can serve as a renewable power source for healthcare systems. This review is written to emphasize the importance of TENG's applications in regenerative medicine and modulation purposes, particularly for the nervous system. Some crucial parameters for implantable consideration are discussed. In the concluding remarks, features for clinical utilization including output efficiency, encapsulation, stability, and miniaturization are suggested as challenges and prospects.  相似文献   
407.
Ranaei  Samira  Suominen  Arho  Porter  Alan  Carley  Stephen 《Scientometrics》2020,122(1):215-247
Scientometrics - Scientometric methods have long been used to identify technological trajectories, but we have seldom seen reproducible methods that allow for the identification of a technological...  相似文献   
408.
Polymer Bulletin - The fabrication of novel scaffolds was represented on the basis of conductive and biodegradable copolymers. The star-like polycaprolactone (S-PCL) was synthesized from...  相似文献   
409.
A narrow temperature window (160°C-190°C) was identified for the selective deposition of Ru on Ni supported on reduced graphene oxide (rGO) through a sequential chemical vapor deposition (CVD) method. Cyclopentadiene and cyclopentene were identified as decomposition products of nickelocene CVD on rGO, whereas only methane was detected in gaseous products from ruthenocene CVD. Heat treatment converted the selectively deposited Ru on Ni/rGO into Ru–Ni core–shell bimetallic system on the surface of rGO as confirmed by high-resolution transmission electron microscopy. The Ru–Ni/rGO thus prepared produced hydrogen with high selectivity in propane steam reforming performed in the temperature range of 350°C to 850°C. Addition of 3.6% Ru against Ni supported on rGO improved the turnover frequency (TOF) of propane up to 70% to 100% compared to the Ni/rGO catalyst at lower temperatures (350°C-450°C). The presence of Ru lowered the activation energy of propane SR from 65.7 kJ mol−1 for Ni/rGO to 48.7 kJ mol−1 for Ru–Ni/rGO catalyst.  相似文献   
410.
Improper interparticle connection between carbon-based materials, poor interface bonding between the carbon counter electrodes (CEs) and substrate, and low surface area are the main limitations of carbon-based CEs in dye-sensitized solar cells. In this study, we utilized foamed cement and binder for adherence and surface area improvement in carbon-based CEs, such as graphite, multi-walled carbon nanotubes, and carbon black (CB). The results revealed that incorporating foamed cement into carbon materials improved the resistance, short-circuit current density, fill factor, and power conversion efficiency of the device. The porous cement/CB nanocomposite CE with a photoconversion efficiency of 5.51% exhibited the best photovoltaic performance. Moreover, this nanocomposite electrode showed an enhancement catalytic activity by high current density in cyclic voltammogram, low charge transfer resistance ( R C T $({R}_{CT}$ ) in electrochemical impedance spectroscopy, and high exchange current density in Tafel measurements compared to other electrodes. The porosity of foamed cement has been found to be the main cause of its superior photovoltaic performance, which expands the contact area with the electrode and enables rich ion transport. Additionally, the enhanced performance was due to strong bonding, crack-free deposited films, superior conductivity, and high catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号