全文获取类型
收费全文 | 67篇 |
免费 | 4篇 |
国内免费 | 1篇 |
专业分类
电工技术 | 2篇 |
综合类 | 1篇 |
化学工业 | 15篇 |
金属工艺 | 5篇 |
机械仪表 | 2篇 |
能源动力 | 3篇 |
轻工业 | 5篇 |
无线电 | 7篇 |
一般工业技术 | 12篇 |
冶金工业 | 12篇 |
原子能技术 | 2篇 |
自动化技术 | 6篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 8篇 |
2017年 | 7篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 5篇 |
2013年 | 6篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 1篇 |
2009年 | 2篇 |
2008年 | 2篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 1篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
The challenges of growing and aging populations combined with limited clinical resources have created huge demand for wearable and portable healthcare devices. Research advances in wearable biosensors have made it easier to achieve reliable noninvasive monitoring of health and body status. In this review, recent progress in the development of body computing systems for personalized healthcare is presented, with key considerations and case studies. Critical form factors for wearable sensors, their materials, structures, power sources, modes of data communication, and the types of information they can extract from the body are summarized. Statistically meaningful data analysis considerations, including using cohort and longitudinal correlation studies, are reviewed to understand how raw sensor signals can provide actionable information on the state of the body. This informs discussions on how collected sensor data can be used for personalized and even preventative care, such as by guiding closed-loop medical interventions. Finally, outstanding challenges for making wearable sensor systems reliable, practical, and ubiquitous are considered in order to disrupt traditional medical paradigms with personalized and precision care. 相似文献
2.
Yuanjing Lin Mallika Bariya Hnin Yin Yin Nyein Liisa Kivimki Sanna Uusitalo Elina Jansson Wenbo Ji Zhen Yuan Tuomas Happonen Christina Liedert Jussi Hiltunen Zhiyong Fan Ali Javey 《Advanced functional materials》2019,29(33)
Development of reliable glucose sensors for noninvasive monitoring without interruption or limiting users' mobility is highly desirable, especially for diabetes diagnostics, which requires routine/long‐term monitoring. However, their applications are largely limited by the relatively poor stability. Herein, a porous membrane is synthesized for effective enzyme immobilization and it is robustly anchored to the modified nanotextured electrode solid contacts, so as to realize glucose sensors with significantly enhanced sensing stability and mechanical robustness. To the best of our knowledge, this is the first report of utilizing such nanoporous membranes for electrochemical sensor applications, which eliminates enzyme escape and provides a sufficient surface area for molecular/ion diffusion and interactions, thus ensuring the sustainable catalytic activities of the sensors and generating reliable measureable signals during noninvasive monitoring. The as‐assembled nanostructured glucose sensors demonstrate reliable long‐term stable monitoring with a minimal response drift for up to 20 h, which delivers a remarkable enhancement. Moreover, they can be integrated into a microfluidic sensing patch for noninvasive sweat glucose monitoring. The as‐synthesized nanostructured glucose sensors with remarkable stability can inspire developments of various enzymatic biosensors for reliable noninvasive composition analysis and their ultimate applications in predictive clinical diagnostics, personalized health‐care monitoring, and chronic diseases management. 相似文献
3.
Falix Lawrence Satyabrata Mishra C. Mallika U. Kamachi Mudali R. Natarajan D. Ponraju S. K. Seshadri T. S. Sampath Kumar 《Journal of Materials Engineering and Performance》2012,21(7):1266-1274
Sheets of polyetheretherketone (PEEK) and PEEK-alumina composites with micron-sized alumina powder with 5, 10, 15, 20, and 25% by weight were fabricated, irradiated with gamma rays up to 10 MGy and the degradation in their thermal properties and morphology were evaluated. The radicals generated during irradiation get stabilized by chain scission and crosslinking. Chain scission is predominant on the surface and crosslinking is predominant in the bulk of the samples. Owing to radiation damage, the glass transition temperature, T g increased for pure PEEK from 136 to 140.5?°C, whereas the shift in T g for the composites decreased with increase in alumina content and for PEEK-25% alumina, the change in T g was insignificant, as alumina acts as an excitation energy sink and reduces the crosslinking density, which in turn decreased the shift in T g towards higher temperature. Similarly, the melting temperature, T m and enthalpy of melting, ??H m of PEEK and PEEK-alumina composites decreased on account of radiation owing to the restriction of chain mobility and disordering of structures caused by crosslinks. The decrease in T m and ??H m was more pronounced in pure PEEK and the extent of decrease in T m and ??H m was less for composites. SEM images revealed the formation of micro-cracks and micro-pores in PEEK due to radiation. The SEM image of irradiated PEEK-alumina (25%) composite showed negligible micro-cracks and micro-pores, because of the reinforcing effect of high alumina content in the PEEK matrix which helps in reducing the degradation in the properties of the polymer. Though alumina reduces the degradation of the polymer matrix during irradiation, an optimum level of ceramic fillers only have to be loaded to the polymer to avoid the reduction in toughness. 相似文献
4.
Activated tungsten inert gas (A-TIG) and flux-cored arc (FCA) weld metals were prepared using 304LN stainless steel plate. The weld metals were thermally aged at 923, 973 and 1023?K for 100?h to study the decomposition of initial δ-ferrite in A-TIG (~10 ferrite number (FN)) and FCA (~5 FN) weld metals into secondary phases like M23C6 carbides, χ and σ. Ferrite number is the measurement of δ-ferrite based on the principle of magnetic property using ferritescope. Preliminary microstructural studies revealed the formation of carbides in FCA weld metals aged at 923?K for 100?h, which was correlated with higher carbon content (0.04?wt-%), and also ageing at higher temperature transformed δ-ferrite into χ/σ phases. However, A-TIG weld metals showed the transformation of δ-ferrite mainly into χ/σ phases. The δ-ferrite transformation kinetics was found to be sluggish in A-TIG weld metals compared to FCA weld metals. This difference was attributed to the difference in the carbon contents of A-TIG and FCA welds. Activated tungsten inert gas weld metals showed better uniform and pitting corrosion resistance compared to FCA weld metals in as-deposited and thermally aged conditions. Presence of higher amount of initial δ-ferrite content in A-TIG weld metal helped diffusion of minor alloying elements like sulphur and phosphorous into it, thereby reducing their microsegregation at the δ/γ interface boundaries and subsequent pitting corrosion attack. Thus, A-TIG welding process was found to be superior compared to FCA welding process. 相似文献
5.
Corrosion fatigue (CF) behaviour of AISI type 316 LN stainless steels (SS) with three different nitrogen contents was evaluated in a boiling aqueous solution of 5?M NaCl+0·15?M Na2SO4+2·5?ml?l?1 HCl at a stress ratio of 0·5 and a frequency of 0·1?Hz. After the CF tests, the specimens were observed under a field emission gun scanning electron microscope (FEG-SEM) as well as an atomic force microscope (AFM) to understand the deformation mechanism which led to the failure. Slip character could be explained based on the surface deformation features observed using FEG-SEM and AFM. A slip irreversibility relation has been proposed which when applied could explain the CF behaviour of these steels with varying nitrogen contents. Increase in the nitrogen content increased the slip reversibility up to 0·14?wt-% nitrogen; however, further increase in nitrogen content had no beneficial effect on the slip reversibility. 相似文献
6.
Sergei F. Burlatsky Vadim V. Atrazhev Mallika Gummalla Dave A. Condit Fuqiang Liu 《Journal of power sources》2009,190(2):485-492
Proper water management in a hydrogen-fueled polymer electrolyte membrane (PEM) fuel cell is critical for performance and durability. A mathematical model has been developed to elucidate the effect of thermal conductivity and water vapor diffusion coefficient in the gas diffusion layers (GDLs). The fraction of product water removed in the vapor phase through the GDL as a function of GDL properties/set of material and component parameters and operating conditions has been calculated. The current model enables identification of conditions wherein condensation occurs in each GDL component. The model predicts the temperature gradient across various components of a PEM fuel cell, providing insight into the overall mechanism of water transport in a given cell design. The water condensation conditions and transport mode in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDLs and water transport scenarios are defined in this work, based on water condensation in the GDL and fraction of water that the GDL removes through the vapor phase, respectively. 相似文献
7.
8.
In this paper, we investigate global uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. We shall rely on a nonlinear alternative of Leray-Schauder type in Fréchet spaces due to Frigon and Granas. The results are obtained by using the α-resolvent family (Sα(t))t≥0 on a complex Banach space X combined with the above-mentioned fixed point theorem. As an application, a controllability result with one parameter is also provided to illustrate the theory. 相似文献
9.