首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   93篇
  国内免费   6篇
电工技术   18篇
综合类   9篇
化学工业   239篇
金属工艺   28篇
机械仪表   36篇
建筑科学   49篇
矿业工程   6篇
能源动力   64篇
轻工业   127篇
水利工程   16篇
石油天然气   12篇
无线电   86篇
一般工业技术   207篇
冶金工业   24篇
原子能技术   7篇
自动化技术   197篇
  2024年   4篇
  2023年   25篇
  2022年   32篇
  2021年   58篇
  2020年   67篇
  2019年   50篇
  2018年   104篇
  2017年   62篇
  2016年   98篇
  2015年   47篇
  2014年   86篇
  2013年   149篇
  2012年   67篇
  2011年   66篇
  2010年   49篇
  2009年   34篇
  2008年   16篇
  2007年   28篇
  2006年   9篇
  2005年   5篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1125条查询结果,搜索用时 656 毫秒
91.
A steady-state three-dimensional non-isothermal computational fluid dynamics (CFD) model of a proton exchange membrane fuel cell is presented. Conservation of mass, momentum, species, energy, and charge, as well as electrochemical kinetics are considered. In this model, the effect of interfacial contact resistance is also included. The numerical solution is based on a finite-volume method. In this study the effects of flow channel dimensions on the cell performance are investigated. Simulation results indicate that increasing the channel width will improve the limiting current density. However, it is observed that an optimum shoulder size of the flow channels exists for which the cell performance is the highest. Polarization curves are obtained for different operating conditions which, in general, compare favorably with the corresponding experimental data. Such a CFD model can be used as a tool in the development and optimization of PEM fuel cells.  相似文献   
92.
Tissue plasminogen activator (tPA) a thrombolytic agent is commonly used for digesting the blood clot. tPA half‐life is low (4–6 min) and its administration needs a prolonged continuous infusion. Improving tPA half‐life could reduce enzyme dosage and enhance patient compliance. Nano‐carries could be used as delivery systems for the protection of enzymes physically, enhancing half‐life and increasing the stability of them. In this study, chitosan (CS) and polyethylene glycol (PEG) were used for the preparation of CS‐g‐PEG/tPA nanoparticles (NPs) via the ion gelation method. Particles’ size and loading capacity were optimised by central composite design. Then, NPs cytotoxicity, release profile, enzyme activity and in vivo half‐life and coagulation time were investigated. The results showed that NPs does not have significant cytotoxicity. Release study revealed that a burst effect happened in the first 5 min and resulted in releasing 30% of tPA. Loading tPA in NPs could decrease 25% of its activity but the half‐life of it increases in comparison to free tPA in vivo. Also, blood coagulation time has significantly affected (p ‐value = 0.041) by encapsulated tPA in comparison to free tPA. So, CS‐g‐PEG/tPA could increase enzyme half‐life during the time and could be used as a non‐toxic candidate delivery system for tPA.Inspec keywords: drug delivery systems, nanofabrication, drugs, nanomedicine, coagulation, biomedical materials, cellular biophysics, enzymes, biochemistry, toxicology, molecular biophysics, biological tissues, blood, nanoparticles, polymersOther keywords: chitosan‐g‐PEG grafted nanoparticles, half‐life enhancer carrier, tissue plasminogen activator delivery, tPA half‐life, prolonged continuous infusion, enzyme dosage, polyethylene glycol, cytotoxicity, enzyme activity, encapsulated tPA, enzyme half‐life, blood coagulation, time 5.0 min  相似文献   
93.
Gadolinium as a contrast agent in MRI technique combined with DTPA causes contrast induced nephropathy (CIN) and nephrogenic systemic fibrosis (NSF) which can reduce by usage of antioxidants such as N‐acetyl cysteine by increasing the membrane''s permeability leads to lower cytotoxicity. In this study, N ‐acetyl cysteine‐PLGA Nano‐conjugate was synthesized according to stoichiometric rules of molar ratios andafter assessment by FTIR, NMR spectroscopy and Atomic Force Microscopy (AFM) imaging was combined with Magnevist® (gadopentetate dimeglumine) and its effects on the renal cells were evaluated. MTT [3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide] and cellular uptake assays have indicated relatively significant toxicity of magnevist (P  < 0.05) on three cell lines including HEK293, MCF7 and L929 compared to other synthesized ligands that shown no toxicity. Moreover, systemic evaluation has shown no notable changes of blood urea nitrogen (BUN) and creatinine in kidney of mice. In consequence, antioxidant effect was increased as well as the renal toxicity of the contrast agent reduced at the cell level. As a result, PLGA‐NAC nano‐conjugate can be a promising choice for decreasing the magnevist toxicity for treatment and prevention of CIN and will be able to open a new horizon to research on reduction of toxicity of contrast agents by using nanoparticles.Inspec keywords: blood, toxicology, nanofabrication, cellular biophysics, biomedical materials, nanoparticles, chromatography, cancer, biodegradable materials, biomedical MRI, kidney, pH, nanomedicine, patient treatment, diseases, atomic force microscopy, Fourier transform infrared spectraOther keywords: cellular toxicity, gadopentate dimeglumine, contrast agent, magnetic resonance imaging technique, diethylenetriamine pentaacetate, contrast‐induced nephropathy, nephrogenic systemic fibrosis, stoichiometric rules, molar ratios, dimethyl sulphoxide solution, chromatography techniques, nuclear magnetic resonance spectroscopy, atomic force microscopy imaging, Magnevist®, gadopentetate dimeglumine, renal cells, MTT cytotoxicity, human embryonic kidney‐293, L929 cell lines, in vitro conditions, cellular uptake assays, Magnevist uptake, antioxidant effect, renal toxicity, cell level, PLGA nanocarrier, acetylcysteine nanoconjugate, Magnevist toxicity, N‐acetylcysteine–PLGA nano‐conjugate, N‐acetyl cysteine‐poly‐lactic‐co‐glycolic acid nanoconjugate  相似文献   
94.
Liquefaction is one of the most destructive natural hazards that cause damage to engineering structures during an earthquake. This study aims to examine the effect of rubber and gravel drainage columns on the reduction of liquefaction potential of saturated sandy soils using a shaking table. Experiments were carried out in various conditions such as construction materials, different arrangements and diameters of drainage columns. Effects of the relative density and the input motion on the base test were investigated as well. The results demonstrate that rubber drainage columns have slightly better performance compared to gravel drainage columns at high relative density and high input acceleration. Soil improvement using gravel drainage columns, which leads to reduction in liquefaction effects at moderate input acceleration and low relative density, is a more effective method than that using rubber drainage columns. By increasing the number and diameter of gravel and rubber drainage columns, deformations due to liquefaction are reduced. The drainage rate of gravel drains is higher than that of rubber drains after shaking. Totally, the outcomes indicate that densification is the most important factor controlling liquefaction.  相似文献   
95.
96.
钢筋与钢纤维混凝土的黏结滑移性能及其关系模型   总被引:1,自引:0,他引:1  
基于内贴应变片的钢筋与钢纤维混凝土局部黏结试件的拉拔试验,研究钢筋与不同强度钢纤维混凝土的黏结性能。通过对实测钢筋应变的分析,建立了以三次多项式表达的黏结应力分布函数,得到了各级荷载作用下钢筋与钢纤维混凝土黏结应力和相对滑移沿黏结区段的分布,进一步分析了钢纤维和混凝土强度对黏结性能的影响。结果表明,随钢纤维的体积率和混凝土强度的增大,黏结试件加载端附近的黏结应力提高,黏结应力极值总体向加载端靠拢;同时,加载端与自由端的滑移减小。最后,提出了能够较好反映钢筋与钢纤维混凝土受力过程的黏结-滑移关系模型。  相似文献   
97.
This article aims at investigating the effects of hygrothermal aging on the damage mechanisms of short white Hemp Fiber Reinforced Polypropylene (HFRP) composites with various fiber contents (10, 20, 30, and 40 wt%). Injected molded specimens were subjected to hygrothermal aging with a relative humidity of 80% and two temperatures, 25 and 50°C. The water absorption and its effect on tensile properties of HFRP composites were investigated. The Acoustic Emission (AE) technique combined with scanning electron microscopy observations was used to identify microstructural damage events leading to overall failure of the HFRP composites. This identification according to hemp‐fiber content and hygrothermal aging was made with an unsupervised method based on a statistical multi‐variable analysis (k‐means algorithm). The AE results indicate that the quality of fiber‐matrix interface plays a major role in the damage process of HFRP composites, shown by the number of AE signals induced by the interface failure and their amplitude ranges. POLYM. COMPOS. 37:1101–1112, 2016. © 2014 Society of Plastics Engineers  相似文献   
98.
The crosstalk and coupling of the external fields on orthogonal microstrip transmission lines in different layers have significant effects on signal quality in MMIC and PCBs. In this paper the crosstalk is analyzed in detail using both full-wave and quasi-static methods. The used full wave method is mixed potential integral equation method of moment (MPIEMoM). Because of the weak coupling between lines, the effect of the incident plane-wave is studied by applying transmission line theory in a scattered voltage formulation uses quasi-TEM propagation model for each interconnection and the exact distribution of the incident electric field within the layers. Afterward, by using the predetermined lumped circuit model of the cross-region, the effect of coupling between two lines is calculated and then applied to terminal voltages in 1–20 GHz frequency range which results in the final terminal voltages.  相似文献   
99.
The aim of this work was to investigate cold-pressed rosemary oil (RO) for its lipid classes, subclasses, fatty acid composition, tocochromanols and total phenolics amount. Antiradical activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH?) and galvinoxyl radicals, antioxidant activity, as measured by the Rancimat test, as well as antimicrobial activity against food-borne bacteria, and dermatophytic fungi of RO were evaluated. In RO, the amount of neutral lipids was highest (ca. 86%), followed by phospholipids (0.92%) and glycolipids (0.88%). The percentages of monounsaturated, polyunsaturated, and saturated fatty acids were 41.7, 42.3, and 15.8%, respectively. Linoleic acid (41.7%) and oleic acid (41.2%) were the major fatty acids while linolenic acid accounted for 1.3% of total fatty acids. The following tocochromanols were detected: α-, β-, γ- and δ-tocopherols, which accounted for 291, 22, 1145, and 41 mg/100 g oil, respectively, as well as α-, β-, γ- and δ-tocotrienols, which accounted for 18, 12, 29, and 158 mg/100 g oil, respectively. RO also contained high levels of phenolic compounds (7.2 mg GAE/g). After 60 min of reaction with free radicals, 67% of DPPH? and 55% of galvinoxyl radicals were quenched by RO. Rancimat test showed that blending RO with sunflower oil increased the induction period (IP) for blends. The IP of the RO: sunflower oil blend (1:9, v/v) was 390 min, and RO: sunflower oil blend (2:8, v/v) was longer (540 min). RO exhibited high antimicrobial potential against food-borne pathogenic bacteria (E. coli, S. enteritidis, and L. monocytogenes) and high antifungal potential against dermatophyte fungi (T. mentagrophytes, and T. rubrum). RO had unique high level of γ-tocopherol, which is a scavenger of reactive nitrogen species making it a promising material in the food, cosmetic and pharmaceutical applications.  相似文献   
100.
This paper reports the production of a novel magnetic nanocomposite based on multi-walled carbon nanotubes (MWCNTs) decorated with magnetic core–shell Fe3O4@SiO2 nanoparticles which were used to fabricate a modified carbon paste electrode (Fe3O4@SiO2/MWCNT-CPE). The Fe3O4@SiO2/MWCNT-CPE was investigated for the simultaneous determination of sunset yellow (SY) and tartrazine (TT) in 0.1 mol/L phosphate buffer solution (pH 6.0) using square wave voltammetry (SWV). The synthesized nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy. The proposed electrode exhibits linear ranges of 0.5–100 μmol/L SY and TT with detection limits of 0.05 and 0.04 μmol/L for SY and TT, respectively. The novel proposed voltammetric method was successfully applied in the simultaneous determination of SY and TT in food products, with results similar to those obtained using a HPLC method at 95 % confidence level.
Graphical Abstract A magnetic nanocomposite based on MWCNTs decorated with core–shell Fe3O4@SiO2 was prepared and showed good ability to distinguish the response of SY and TT
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号