For optimization-based dynamic control of simulated moving bed (SMB) process, a novel control strategy based on process identification, which is an extension of the earlier work (Song et al., 2006a. Identification and predictive control of a simulated moving bed process: purity control. Chemical Engineering Science 61, 1973-1986), is proposed. A linear output prediction model is obtained by the method of subspace identification and used for the dynamic control. The controller is designed for optimizing the production cost while maintaining the specified product purities. For all of these, the average purities over one switching period of the target components in extract and raffinate streams, the reciprocal productivity and the solvent consumption are selected as output variables, while the flow rates in 1, 2, 3 and 4 are chosen as the manipulated variables. The realization of this concept is discussed and assessed on a virtual eight column SMB unit for a system following a bi-Langmuir isotherm. The identified prediction model is proven to be in good agreement with the first principles model considered as the actual SMB process. For typical control objectives encountered in actual operation, i.e., disturbance rejection and set-point tracking, it is shown that the proposed controller exhibits excellent performance, hence it is an effective tool for optimization-based control of SMB process. 相似文献
Summary: Organic‐inorganic nanocomposite hybrid coatings were prepared through a dual‐cure process involving cationic photopolymerization of a hyperbranched epoxy functionalized resin and subsequent condensation of an alkoxysilane inorganic precursor. All the formulations investigated gave rise to photocured films characterized by high gel content values. An increase in glass transition temperature and an increase in storage modulus above Tg in the rubbery plateau is observed with increasing TEOS content in the photocurable formulation. The important role of GPTS on reducing the inorganic domain size and avoiding macroscopic phase separation was demonstrated by TEM analyses.
TEM obtained for one of the cured films in the presence of GPTS. 相似文献
A key component of a hydrogen fuel cell is a catalyst to dissociate dihydrogen to hydrogen atoms. In the present study, the adsorption of hydrogen on Pt/C fuel cell catalysts has been investigated by inelastic neutron scattering spectroscopy.
Monitoring a clean Pt(50%)/C catalyst with low energy neutron spectroscopy, after exposure to dihydrogen at 20 K, as it was heated to room temperature, showed three distinct temperature regimes: (i) a decrease in intensity from 10 to 60 K, (ii) a rise to a maximum between 60 and 120 K and then (iii) a slow fall-off towards room temperature. We assign the three regions as: (i) desorption of physisorbed dihydrogen, (ii) dissociation of dihydrogen to give an adsorbed layer and (iii) damping of the response by an increasing Debye–Waller factor.
The vibrational INS spectra of a series of Pt/C catalysts prepared under varying conditions were similar indicating that the same types of site are common to all the catalysts, although the relative proportions of each site are sample dependent. Features at 520, 950 and part of the intensity at 1300 cm−1 are assigned to hydrogen on (1 1 1) faces, in good agreement with single crystal data. The mode at 640 cm−1 is assigned as the doubly degenerate asymmetric stretch of Pt(1 0 0) faces with the symmetric stretch near 550 cm−1.
We assign the bending mode of the on-top site to the feature at 470 cm−1. The Pt–H stretch mode was observed at 2079 cm−1. This is a significant result: this is the first time that hydrogen on the on-top sites has been observed on nanosized platinum particles supported on high surface area carbon black. The width of the INS peak is surprisingly large and may give additional information on the type and relative proportions of the crystallographic faces present on the catalyst particles. 相似文献
This study has developed an electrochemical impedance spectroscopy (EIS) method for the in situ investigation of the influence of positive plate compression on the electrochemical behaviour of lead-acid batteries during charge/discharge cycling. The EIS data for a fully charged and fully discharged battery are internally consistent with the expected kinetics of a battery in the opposite states of charge, and demonstrate that EIS measurements may be recorded with a high level of reproducibility. Furthermore, this study has necessitated the development of a special cell incorporating horizontally orientated battery plates that can be subjected to elevated pressure through the stacking of lead bricks on top of the cell, as well as a physically robust reference electrode system that can withstand the application of pressure. For this purpose, a platinum-wire pseudo-reference electrode has been developed, and has been shown to exhibit sufficient electrode stability over the period of an EIS recording, enabling the measurement of reproducible and meaningful EIS data. Additionally, the influence of positive plate compression on the behaviour of the lead-acid battery has been investigated by using scanning electron microscopy (SEM). Clearly, the experimental data show that plate compression enhances significantly the kinetics and concomitant performance of the lead-acid battery, and this is related to the enhanced reactivity of the active material, as rationalized by using the agglomeration-of-spheres (AOS) model. 相似文献
A marriage of electrochemical impedance spectroscopy (EIS) and in situ synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) has provided a powerful new technique for the elucidation of the mechanistic chemistry of electrochemical systems. In this study, EIS/SR-GIXRD has been used to investigate the influence of metal ion buffer calibration ligands, along with natural organic ligands in seawater, on the behaviour of the iron chalcogenide glass ion-selective electrode (ISE). The SR-GIXRD data demonstrated that citrate - a previously reported poor iron calibration ligand for the analysis of seawater - induced an instantaneous and total dissolution of crystalline GeSe and Sb2Se3 in the modified surface layer (MSL) of the ISE, while natural organic ligands in seawater and a mixture of ligands in a mimetic seawater ligand system protected the MSL's crystalline inclusions of GeSe and Sb2Se3 from oxidative attack. Expectedly, the EIS data showed that citrate induced a loss in the medium frequency time constant for the MSL of the ISE, while seawater's natural organic ligands and the mimetic ligand system preserved the medium frequency EIS response characteristics of the ISE's MSL. The new EIS/SR-GIXRD technique has provided insights into the suitability of iron calibration ligands for the analysis of iron in seawater. 相似文献
The thermoelectric properties of melt-processed nanocomposites consisting of a polycarbonate (PC) thermoplastic matrix filled with commercially available carboxyl (–COOH) functionalized multi-walled carbon nanotubes (MWCNTs) were evaluated. MWCNTs carrying carboxylic acid moieties (MWCNT-COOH) were used due the p-doping that the carboxyl groups facilitate, via electron withdrawing from the electron-rich π-conjugated system. Preliminary thermogravimetric analysis (TGA) of MWCNT-COOH revealed that the melt-mixing was limited at low temperatures due to thermal decomposition of the MWCNT functional groups. Therefore, PC was mixed with 2.5 wt% MWCNT-COOH (PC/MWCNT-COOH) at 240 °C and 270 °C. In order to reduce the polymer melt viscosity, a cyclic butylene terephthalate (CBT) oligomer was utilized as an additive, improving additionally the electrical conductivity of the nanocomposites. The melt rheological characterization of neat PC and PC/CBT blends demonstrated a significant decrease of the complex viscosity by the addition of CBT (10 wt%). Optical and transmission electron microscopy (OM, TEM) depicted an improved MWCNT dispersion in the PC/CBT polymer blend. The electrical conductivity was remarkably higher for the PC/MWCNT-COOH/CBT composites compared to the PC/MWCNT-COOH ones. Namely, the PC/MWCNT-COOH/CBT processed at 270 °C exhibited the best values with electrical conductivity; σ = 0.05 S/m, Seebeck coefficient; S = 13.55 μV/K, power factor; PF = 7.60 × 10−6μW/m K−2, and thermoelectric figure of merit; ZT = 7.94 × 10−9. The PC/MWCNT-COOH/CBT nanocomposites could be ideal candidates for large-scale thermal energy harvesting, even though the presently obtained ZT values are still too low for commercial applications. 相似文献