首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   11篇
  国内免费   1篇
电工技术   2篇
化学工业   35篇
金属工艺   7篇
机械仪表   1篇
建筑科学   3篇
能源动力   3篇
轻工业   18篇
水利工程   6篇
无线电   11篇
一般工业技术   38篇
冶金工业   6篇
自动化技术   30篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   12篇
  2015年   4篇
  2014年   3篇
  2013年   11篇
  2012年   12篇
  2011年   9篇
  2010年   11篇
  2009年   11篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
71.
A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum will have many potential applications in next‐ generation technologies, such as visible‐spectrum communication, superbright solid‐state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. 2D materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. Here, the intriguing functionalities of wrinkled reduced graphene oxide, single‐layer graphene, and few‐layer hexagonal boron nitride, respectively, are utilized to design highly stretchable and wearable random laser devices with ultralow threshold. Using methyl‐ammonium lead bromide perovskite nanocrystals (PNC) to illustrate the working principle, the lasing threshold is found to be ≈10 µJ cm?2, about two times less than the lowest value ever reported. In addition to PNC, it is demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, this study is very useful for the future development of high‐performance wearable optoelectronic devices.  相似文献   
72.
Proper distribution of thermally conductive nanomaterials in polymer batteries offers new opportunities to mitigate performance degradations associated with local hot spots and safety concerns in batteries. Herein, a direct ink writing (DIW) method is utilized to fabricate polyethylene oxide (PEO) composite polymers electrolytes (CPE) embedded with silane-treated hexagonal boron nitride (S-hBN) platelets and free of any volatile organic solvents. It is observed that the S-hBN platelets are well aligned in the printed CPE during the DIW process. The in-plane thermal conductivity of the printed CPE with the aligned S-hBN platelets is 1.031 W −1 K−1, which is about 1.7 times that of the pristine CPE with the randomly dispersed S-hBN platelets (0.612 W −1 K−1). Thermal imaging shows that the peak temperature (°C) of the printed electrolytes is 24.2% lower than that of the CPE without S-hBN, and 10.6% lower than that of the CPE with the randomly dispersed S-hBN, indicating a superior thermal transport property. Lithium-ion half-cells made with the printed CPE and LiFePO4 cathode displayed high specific discharge capacity of 146.0 mAh g−1 and stable Coulombic efficiency of 91% for 100 cycles at room temperature. This work facilitates the development of printable thermally-conductive polymers for safer battery operations.  相似文献   
73.
Long term water demand forecasting is needed for the efficient planning and management of water supply systems. A Monte Carlo simulation approach is adopted in this paper to quantify the uncertainties in long term water demand prediction due to the stochastic nature of predictor variables and their correlation structures. Three future climatic scenarios (A1B, A2 and B1) and four different levels of water restrictions are considered in the demand forecasting for single and multiple dwelling residential sectors in the Blue Mountains region, Australia. It is found that future water demand in 2040 would rise by 2 to 33 % (median rise by 11 %) and 72 to 94 % (median rise by 84 %) for the single and multiple dwelling residential sectors, respectively under different climatic and water restriction scenarios in comparison to water demand in 2010 (base year). The uncertainty band for single dwelling residential sector is found to be 0.3 to 0.4 GL/year, which represent 11 to 13 % variation around the median forecasted demand. It is found that the increase in future water demand is not notably affected by the projected climatic conditions but by the increase in the dwelling numbers in future i.e. the increase in total population. The modelling approach presented in this paper can provide realistic scenarios of forecasted water demands which would assist water authorities in devising appropriate management strategies to enhance the resilience of the water supply systems. The developed method can be adapted to other water supply systems in Australia and other countries.  相似文献   
74.
The contamination of surface water sources by organic and inorganic pollutants is a major concern in rapidly industrializing countries, and the removal of these potentially hazardous contaminants from the aquatic environment using environmentally friendly technologies is therefore crucial. Biosorption, the passive binding of pollutants using dead biomass, can be achieved using various low-cost agro-industrial residues, which are a convenient substitute to the existing technologies for removing pollutants from aqueous solutions. This review deals with the implementation of sugarcane bagasse as a cost-effective natural biosorbent. We have extensively reviewed the status of research into sugarcane bagasse-based biosorbents in raw and modified forms and explore their efficacy in the removal of pollutants. For this purpose, we considered the bagasse modification processes, modifying agents, and the effects of different experimental variables (for example, biosorbent dosage, initial pollutant ion concentration, solution pH and temperature, contact time, and adsorbent particle size) on the adsorption process and potential. Moreover, we propose the following important goals for future research: (1) determine the adsorption potential of sugarcane bagasse at pilot and industrial scales, (2) demonstrate the efficacies of biosorption techniques for real effluents, and (3) conduct a molecular modeling study to elucidate sugarcane bagasse-associated adsorption mechanism(s).  相似文献   
75.
The present study was aimed to improve the value of native species Sardinella longiceps by fermentation method. Throughout the fermentation process, Halophilic archaeal diversity (103–107 log CFU/g) with their biochemical changes was observed. Overall, 67 archaeal isolates were isolated in various stages of fermentation and its belonging to sixteen genera dominated by Halobacterium (16), Natronobacterium (9), Halococcus (8), Halomicrobium (5), Halorubrum (4) and Haloalkalicoccus (4) which were identified by 16S rRNAgene analysis. During the fish sauce fermentation, Halobacterium sp. S12FS1 was predominant and it has significantly reduced (75%) the maturation time from 12 months into 4 months with an effective biochemical changes and potential protease and lipase enzyme activities. The sensory evaluation of archaeal fermented samples has received higher level (9.1 ± 0.48) of acceptability than control (7.4 ± 0.43). Hence, the implementation of present work will be successful at commercial level and will support directly to fishery products development globally.  相似文献   
76.
Metal-containing epoxy resins [Er?CM(II)] have been prepared by the reaction of Schiff base metal complexes and epichlorohydrin in basic medium. All the synthesized monomers and polymers were characterized by elemental, spectral (IR, 1H-NMR, and 13C-NMR), and thermal analysis. Coatings of the metal-containing epoxy resins were prepared on naval steel strips and subjected to physicomechanical and anticorrosive tests. The surface morphology and thickness of the coatings was found to be 75?±?10???m. The Zn(II) chelated epoxy resin showed lower I corr values of 0.482, 0.520, and 1.02???A/cm2 in NaCl, NaOH, and HCl solution (3.5?wt%), respectively. In addition, the antimicrobial activity of the prepared coating strips was carried out by using minimum inhibitory concentration and minimum bactericidal concentration methods against S. aureus, B. subtilis, E. coli, and P. aeruginosa. It was found that the Er?CCu(II) showed higher antibacterial activity than other metal chelated epoxy resins.  相似文献   
77.
Summary The abstraction of a shared memory is of growing importance in distributed computing systems. Traditional memory consistency ensures that all processes agree on a common order of all operations on memory. Unfortunately, providing these guarantees entails access latencies that prevent scaling to large systems. This paper weakens such guarantees by definingcausal memory, an abstraction that ensures that processes in a system agree on the relative ordering of operations that arecausally related. Because causal memory isweakly consistent, it admits more executions, and hence more concurrency, than either atomic or sequentially consistent memories. This paper provides a formal definition of causal memory and gives an implementation for message-passing systems. In addition, it describes a practical class of programs that, if developed for a strongly consistent memory, run correctly with causal memory. Mustaque Ahamad is an Associate Professor in the College of Computing at the Georgia Institute of Technology. He received his M.S. and Ph.D. degrees in Computer Science from the State University of New York at Stony Brook in 1983 and 1985 respectively. His research interests include distributed operating systems, consistency of shared information in large scale distributed systems, and replicated data systems. James E. Burns received the B.S. degree in mathematics from the California Institute of Technology, the M.B.I.S. degree from Georgia State University, and the M.S. and Ph.D. degrees in information and computer science from the Georgia Institute of Technology. He served on the faculty of Computer Science at Indiana University and the College of Computing at the Georgia Institute of Technology before joining Bellcore in 1993. He is currently a Member of Technical Staff in the Network Control Research Department, where he is studying the telephone control network with special interest in behavior when faults occur. He also has research interests in theoretical issues of distributed and parallel computing especially relating to problems of synchronization and fault tolerance.This work was supported in part by the National Science Foundation under grants CCR-8619886, CCR-8909663, CCR-9106627, and CCR-9301454. Parts of this paper appeared in S. Toueg, P.G. Spirakis, and L. Kirousis, editors,Proceedings of the Fifth International Workshop on Distributed Algorithms, volume 579 ofLecture Notes on Computer Science, pages 9–30, Springer-Verlag, October 1991The photograph of Professor J.E. Burns was published in Volume 8, No. 2, 1994 on page 59This author's contributions were made while he was a graduate student at the Georgia Institute of Technology. No photograph and biographical information is available for P.W. Hutto Gil Neiger was born on February 19, 1957 in New York, New York. In June 1979, he received an A.B. in Mathematics and Psycholinguistics from Brown University in Providence, Rhode Island. In February 1985, he spent two weeks picking cotton in Nicaragua in a brigade of international volunteers. In January 1986, he received an M.S. in Computer Science from Cornell University in Ithaca, New York and, in August 1988, he received a Ph.D. in Computer Science, also from Cornell University. On August 20, 1988, Dr. Neiger married Hilary Lombard in Lansing, New York. He is currently a Staff Software Engineer at Intel's Software Technology Lab in Hillsboro, Oregon. Dr. Neiger is a member of the editorial boards of theChicago Journal of Theoretical Computer Science and theJournal of Parallel and Distributed Computing.  相似文献   
78.
Load controlled fatigue experiments were performed on 8-ply unidirectional ([0]8) SCS-6-Ti-15-3 metal matrix composites (MMCs) at different temperatures, and the results were interpreted in terms of the overall three-regime framework of fatigue. The emphasis was on understanding the mechanisms and mechanics of constituent damage evolution, and their effects on fatigue life. Most tests were performed at an R-ratio of 0.1, but limited fully-reversed (R = −1) tests were conducted. In regime 1, damage was fiber failure dominated, but the exact mechanisms were different at room and elevated temperatures. In regime 2, observation of matrix cracks and persistent slip bands provided convincing evidence of matrix dominated damage. Weak fiber-matrix interfaces contributed to crack bridging. However, fiber fracture also played an important role in regime 2; tension-tension and tension-compression tests showed similar lives on a maximum fiber stress basis, although the strain range, which primarily controls matrix crack growth, was almost double for R = −1 compared with R = 0 or 0.1. Good agreement was obtained from the different R-ratio tests, between the MMC and matrix data, and data at room and elevated temperatures, when compared based on the strain range in the tension part of a cycle. Analyses and observations of fiber pull-out lengths and fiber fractures in the matrix crack wake provided evidence of fiber damage; the analyses also helped to explain increased fiber bridging with fiber volume fraction. Issues of fatigue life prediction are briefly discussed.  相似文献   
79.
Wang D  Pierre A  Kibria MG  Cui K  Han X  Bevan KH  Guo H  Paradis S  Hakima AR  Mi Z 《Nano letters》2011,11(6):2353-2357
We report on the achievement of wafer-level photocatalytic overall water splitting on GaN nanowires grown by molecular beam epitaxy with the incorporation of Rh/Cr(2)O(3) core-shell nanostructures acting as cocatalysts, through which H(2) evolution is promoted by the noble metal core (Rh) while the water forming back reaction over Rh is effectively prevented by the Cr(2)O(3) shell O(2) diffusion barrier. The decomposition of pure water into H(2) and O(2) by GaN nanowires is confirmed to be a highly stable photocatalytic process, with the turnover number per unit time well exceeding the value of any previously reported GaN powder samples.  相似文献   
80.
Stabilization of wurtzite Si nanocrystals embedded in a metal/metal silicide matrix by the metal induced crystallization process is demonstrated. The process involves the growth of 50 nm thick Ni films on borosilicate glass (BSG) substrates followed by 700 nm thick amorphous Si films and annealing of this multilayered stack at 550 °C in furnace atmosphere for 1 h. The presence of wurtzite Si is established based on electron diffraction studies and is also confirmed by the Raman signature of wurtzite Si at 504 cm−1. It is shown that the growth of wurtzite Si is mediated by the formation of Nickel Silicide, as evidenced by the Raman signal at 294 cm−1. The films exhibit a band gap greater than 1.9 eV with dc resistances of the order of 10 GΩ. It is proposed that such high resistivities should make this form of Si ideal for PV and microwave device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号