首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2189篇
  免费   131篇
  国内免费   4篇
电工技术   29篇
综合类   1篇
化学工业   473篇
金属工艺   44篇
机械仪表   75篇
建筑科学   105篇
能源动力   166篇
轻工业   380篇
水利工程   14篇
石油天然气   9篇
无线电   134篇
一般工业技术   432篇
冶金工业   76篇
原子能技术   13篇
自动化技术   373篇
  2024年   8篇
  2023年   23篇
  2022年   54篇
  2021年   94篇
  2020年   89篇
  2019年   93篇
  2018年   109篇
  2017年   92篇
  2016年   128篇
  2015年   71篇
  2014年   102篇
  2013年   198篇
  2012年   128篇
  2011年   176篇
  2010年   117篇
  2009年   150篇
  2008年   135篇
  2007年   111篇
  2006年   81篇
  2005年   67篇
  2004年   56篇
  2003年   42篇
  2002年   42篇
  2001年   12篇
  2000年   14篇
  1999年   25篇
  1998年   23篇
  1997年   11篇
  1996年   20篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有2324条查询结果,搜索用时 15 毫秒
81.
In this article, urease was immobilized in a conducting network via complexation of poly(1‐vinyl imidazole) (PVI) with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) (PAMPS). The preparation method for the polymer network was adjusted by using Fourier transform infrared (FTIR) spectroscopy. A scanning electron microscope (SEM) study revealed that enzyme immobilization had a strong effect on film morphology. The proton conductivity of the PVI/PAMPS network was measured via impedance spectroscopy, under humidified conditions. The basic characteristics (Michealis‐Menten constants, pHopt, pHstability, Topt, Tstability, reusability, and storage stability) of the immobilized urease were determined. The obtained results showed that the PAA/PVI polymer network was suitable for enzyme immobilization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
82.
In this study, the surface characteristics of polyester and polyamide fabrics were changed by plasma polymerization technique utilizing acrylic acid as precursor. This monomer was used to produce hydrophilic materials with extended absorbency. The hydrophilicity, total wrinkle recovery angle (WRA°) and breaking strength of the fabrics were determined prior and after plasma polymerization treatment. The modification of surfaces was carried out at low pressure (<100 Pa) and low temperature (<50°C) plasma conditions. The effects of exposure time and discharge power parameters were optimized by comparing properties of the fabrics before and after plasma polymerization treatments. It was shown that two sides of polyester fabric samples were treated equally and homogeneously in plasma reactor. For polyester fabrics, the minimum wetting time, 0.5 s, was observed at two plasma processing parameters of 10 W–45 min and 10 W–20 min, where untreated fabric has a wetting time of 6 s. For polyester fabrics, the maximum value was obtained at 60 W–5 min with the wrinkle recovery angle of 306° where the untreated fabric has 290°. The optimum plasma conditions for polyamide fabrics were determined as 30 W–45 min where 2 s wetting time was observed. Wrinkle recovery angle of untreated polyamide fabric was 264°. In this study, after plasma polymerization of acrylic acid, wrinkle recovery angle values were increased by 13%. No significant change was observed in breaking strength of both fabrics after plasma treatment. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2318–2322, 2007  相似文献   
83.
In this study, the oxidative polycondensation reaction conditions of 4‐[(4‐methylphenyl)iminomethyl]phenol (4‐MPIMP) were studied by using oxidants such as air O2, H2O2, and NaOCl in an aqueous alkaline medium between 50 and 90°C. The structures of the synthesized monomer and polymer were confirmed by FTIR, UV–vis, 1H–13C‐NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC), and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(4‐methylphenyl)iminomethyl]phenol (P‐4‐MPIMP) was found to be 28% for air O2 oxidant, 42% for H2O2 oxidant, and 62% for NaOCl oxidant. According to the SEC analysis, the number–average molecular weight (Mn), weight–average molecular weight (Mw), and polydispersity index values of P‐4‐MPIMP were found to be 4400 g mol?1, 5100 g mol?1, and 1.159, using H2O2, and 4650 g mol?1, 5200 g mol?1, and 1.118, using air O2, and 5100 g mol?1, 5900 g mol?1, and 1.157, using NaOCl, respectively. According to TG analysis, the weight losses of 4‐MPIMP and P‐4‐MPIMP were found to be 85.37% and 72.19% at 1000°C, respectively. P‐4‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐4‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels and electrochemical energy gaps (E) of 4‐MPIMP and P‐4‐MPIMP were found to be ?5.76, ?5.19; ?3.00, ?3.24; 2.76 and 1.95 eV, respectively. According to UV–vis measurements, optical band gaps (Eg) of 4‐MPIMP and P‐4‐MPIMP were found to be 3.34 and 2.82 eV, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
84.
The aim of this study is to investigate the effects of the reactive and nonreactive polyhedral oligomeric silsesquioxane (POSSs) types and their composition on the mechanical, thermal, and morphological properties of poly(ethylene glycol) plasticized poly(lactic acid) (PLA) composites prepared with melt compounding. The results showed that the incorporation of POSS decreased the melt viscosity of the compounds regardless of POSS type. The lowest viscosity was obtained with epoxy‐POSS, which is the only one that is liquid at processing temperature in comparison to the others. It was revealed from the mechanical tests that the toughness‐related properties such as impact strength and elongation at break improved by the addition of POSS without remarkable deterioration in stiffness. The chemical structure of the POSS influenced the level of dispersion and hence the mechanical performance of the composites. Octaisobutyl‐POSS, being the nonreactive and nonpolar one, had the best dispersion among the other reactive and polar POSS types. The glass transition temperature of the matrix decreased in the presence of POSS types. In addition, the POSS particles also had an impact on the crystallization of PLA. The thermal stability of the composites improved in the presence of POSS particles with respect to the POSS content and the POSS type. POLYM. ENG. SCI., 54:264–275, 2014. © 2013 Society of Plastics Engineers  相似文献   
85.
Green fluorescent protein (GFP) molecules are attached to titanium dioxide and cadmium oxide nanoparticles via sol–gel method and fluorescence dynamics of such a protein–metal oxide assembly is investigated with a conventional time correlated single photon counting technique. As compared to free fluorescent protein molecules, time-resolved experiments show that the fluorescence lifetime of GFP molecules bound to these metal oxide nanoparticles gets shortened dramatically. Such a decrease in the lifetime is measured to be 22 and 43 percent for cadmium oxide and titanium dioxide respectively, which is due to photoinduced electron transfer mechanism caused by the interaction of GFP molecules (donor) and metal oxide nanoparticles (acceptor). Our results yield electron transfer rates of 3.139×108 s−1 and 1.182×108 s−1 from the GFP molecules to titanium dioxide and cadmium oxide nanoparticles, respectively. The electron transfer rates show a marked decrease with increasing driving force energy. This effect represents a clear example of the Marcus inverted region electron transfer process.  相似文献   
86.
Dissolved oxygen is the amount of oxygen dissolved in water corresponding to an important water quality parameter in rivers, streams, and lakes. Hydraulic structures can increase dissolved oxygen levels by creating turbulent conditions where small air bubbles are carried into the bulk of the flow. A gated conduit is a hydraulic structure that can be used efficiently in aeration and oxygen transfer. The subatmospheric pressure between the upstream and downstream of the gate is the reason for the air injection. Ozone is an unstable gas comprised of three oxygen atoms, and it can be used for water treatment. Ozone is thermodynamically unstable and spontaneously reverts back into oxygen. Ozone has been widely accepted as an effective disinfectant and a chemical oxidant. In this study a series of experiments was conducted to determine the ozone injection performance of circular conduits. Results showed that circular conduits are very effective for ozone injection.  相似文献   
87.
Phenolic compound distribution of Turkish olive cultivars and their matching olive oils together with the influence of growing region were investigated. One hundred and one samples of olives from 18 cultivars were collected during two crop years from west, south and south‐east regions of Turkey. The olives were processed to oils and both olive and olive oil samples were evaluated for their phenolic compound distribution. The results have shown that main phenolics of Turkish olives were tyrosol, oleuropein, p‐coumaric acid, verbascoside, luteolin 7‐O‐glucoside, rutin, trans cinnamic acid, luteolin, apigenin, cyanidin 3‐O‐glucoside and cyanidin 3‐O‐rutinoside. Oleuropein and trans cinnamic acid were present in higher amounts among all phenolics. Principal component analyses showed that the growing region did not have drastic effect on phenolic profile of olives. The major phenolic compounds of olive oils were tyrosol, syringic acid, p‐coumaric acid, luteolin‐7‐O‐glucoside, trans cinnamic acid, luteolin and apigenin. Luteolin is a predominant phenolic compound in almost all oil samples. Total phenol concentrations of Southeast Anatolian oils were found to be lower than those of the other regions.  相似文献   
88.
Conducting polypyrrole (PPy)/polyacrylonitrile (PAN) composite fibers were prepared by the polymerization of pyrrole in the presence of PAN fibers with potassium persulfate in an acidic aqueous solution. We obtained composite fibers containing concentrations of PPy as high as 1.14% and having surface resistivities as low as 0.6 kΩ/cm2 by changing the polymerization parameters, including the temperature and concentrations of pyrrole and oxidant. The tensile strength of 10.02 N/m2 and breaking elongation of 32.68% for the pure PAN fiber increased up to 10.45 N/m2 and 33.23%, respectively, for the composite fiber containing 0.13% PPy. The change in the resistivity of the PPy/PAN composite fiber during heating–cooling cycles in the temperature range of +5 to 120°C was examined. Scanning electron microscopy and optical microscopy images of the composite fibers showed that the PPy coating was restricted to the surfaces of the PAN fibers. Surface resistivity measurements, Fourier transform infrared spectroscopy, and thermogravimetric analysis techniques were also used to characterize the composite fibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
89.
ABSTRACT

Treatments of phenol formaldehyde producing wastewater (PFPW) by electrooxidation (EO) and electro-Fenton (EF) successive processes were carried out in a batch electrolytic reactor using graphite (Gr) and stainless steel (Ss) electrodes. After the completion of the EO process, the wastewater was further treated with EF process. The influence of operating variables such as current density, operating time, initial pHi and H2O2 concentration was evaluated for removals of phenol, TOC and COD in PFPW. Gr/Gr, Gr/Ss or Ss/Ss and Ss/Gr electrode pair were used as anode and cathode. The best removal efficiency in the EO process was obtained with Gr/Gr (93%) as compared to Gr/Ss (82%), Ss/Ss (63%) and Ss/Gr (55%). The removal efficiencies for the EO process using Gr-Gr electrode pair were obtained as 93% for phenol, 61% for COD and 44% for TOC at initial pHi 7,5 g/L of NaCl, 50 mA/cm2 and 5 h. In the EF process, the removal efficiencies at pHi 3,5 mA/cm2 and 30 mM H2O2 and 45 min were 100% for phenol, 76% for COD and 59% for TOC. This study provided that the successive processes are an effective method for the removal of phenolic compounds from the wastewater.  相似文献   
90.
A rapid method for the determination of some important physicochemical properties in frying oils has been developed. Partial least square regression (PLS) calibration models were applied to the physicochemical parameters and near infrared spectroscopy (NIR) spectral data. PLS regression was used to find the NIR region and the data pre-processing method that give the best prediction of the chemical parameters. Calibration and validation were appropriated by leave one out cross validation and test set validation techniques for predicting free fatty acids (FFA), total polar materials (cTPM; measured by chromatographic method and iTPM measured by an instrumental method), viscosity and smoke point of the frying oil samples. For PLS models using the cross validation techniques, the best correlations (r) between NIR predicted data and the standard method data for iTPM in oils were 93.79 and root mean square error of prediction (RMSEP) values were 5.53. For PLS models using the test set validation techniques, the best correlations (r) between NIR predicted data and standard method data for FFA, cTPM, viscosity and smoke point in oils were 92.58, 94.61, 81.95 and 84.07 and RMSEP values were 0.121, 3.96, 22.30 and 8.74, respectively. In conclusion, NIR technique with chemometric analysis was found very effective in predicting frying oil quality changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号