首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   15篇
  国内免费   1篇
电工技术   5篇
综合类   24篇
化学工业   65篇
金属工艺   12篇
机械仪表   28篇
建筑科学   30篇
能源动力   28篇
轻工业   16篇
石油天然气   1篇
无线电   41篇
一般工业技术   44篇
冶金工业   14篇
原子能技术   2篇
自动化技术   74篇
  2023年   10篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   9篇
  2018年   14篇
  2017年   18篇
  2016年   11篇
  2015年   8篇
  2014年   12篇
  2013年   27篇
  2012年   24篇
  2011年   32篇
  2010年   26篇
  2009年   33篇
  2008年   21篇
  2007年   19篇
  2006年   16篇
  2005年   6篇
  2004年   11篇
  2003年   25篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有384条查询结果,搜索用时 205 毫秒
311.
A numerical analysis of the process of jet drying of a moist cylinder was conducted. The drying jet was a laminar 2D jet stationed at three different distances (D/H = 0.22, 0.25, and 0.33) from the moist cylinder to investigate the jet effectiveness on heat and mass transfer. The diameter of the object and initial jet height were fixed in all cases. Temperature and mass distributions were obtained inside the object for different jet velocities. A finite volume method was used to solve the governing equations for momentum and energy with a commercial code. Calculations were performed for three different Reynolds numbers, namely, Re = 100, 200, and 300. It was found that heat and mass transfer increased with decreasing the distance, D/H, between the jet and the cylinder. In addition, increasing Reynolds number showed a positive effect on heat and mass transfer. Locally, jet drying was found to be most effective near the stagnation point on the leading side of the cylinder.  相似文献   
312.
This study focuses on both epitaxial growths of InxGa1?xN epilayers with graded In content, and the performance of solar cells structures grown on sapphire substrate by using metal organic chemical vapor deposition. The high resolution X-ray and Hall Effect characterization were carried out after epitaxial InGaN solar cell structures growth. The In content of the graded InGaN layer was calculated from the X-ray reciprocal space mapping measurements. Indium contents of the graded InGaN epilayers change from 8.8 to 7.1 % in Sample A, 15.7–7.1 % in Sample B, and 26.6–15.1 % in Sample C. The current voltage measurements of the solar cell devices were carried out after a standard micro fabrication procedure. Sample B exhibits better performance with a short-circuit current density of 6 mA/cm2, open-circuit voltage of 0.25 V, fill factor of 39.13 %, and the best efficiency measured under a standard solar simulator with one-sun air mass 1.5 global light sources (100 mW/cm2) at room temperature for finished devices was 0.66 %.  相似文献   
313.
Wireless multimedia sensor networks (WMSNs), having inherent features and limited resources, require new quality of service (QoS) protocols for real-time and multimedia applications. In this paper, we present a cross-layer QoS architecture (QoSMOS), that unifies network and link layers into a single communication module for QoS provisioning. Based on QoSMOS architecture, we developed an example reference cross-layer protocol, named cross-layer communication protocol (XLCP), enabling scalable service differentiation in WMSNs. Comprehensive analysis of simulation results indicate that the proposed architecture successfully differentiates service classes in terms of soft delay, reliability and throughput domains. A comparative analysis of XLCP and its counterparts is also given to show the superiority of the cross-layer protocol.  相似文献   
314.
Dielectrophoresis under the application of AC electric fields is one of the primary fabrication techniques (DEPFT) for obtaining aligned carbon nanotube (CNT)–polymer nanocomposites, and is used here to generate data sets from which DEPFT fabrication models in terms of CNT dispersion and orientation distribution can be developed. While the general understanding of how CNTs form aligned filaments under the influence of dielectrophoretic forces and moments is well established, detailed multi‐CNT‐filament formation predictions of microstructure evolution from a random dispersion into a more ordered structure remain intractable. As such, effort here is focused towards the development of phenomenological fabrication models for controlling local CNT dispersion and orientation as a function of applied electric field magnitude, frequency, and exposure time. In this study, 0.03 wt% single‐wall nanotubes (SWNTs) and acid treated functionalized SWNTs (COOH‐SWNTs) were dispersed in a photopolymerizable monomer blend (urethane dimethacrylate (UDMA) and 1,6‐hexanediol dimethacrylate (HDDMA)). Ultrasonication techniques were used to obtain the two different acrylate solutions i.e., 0.03% SWNTs/ UDMA/ HDDMA(9/1) solution and a 0.03% COOH‐SWNTs/UDMA/HDDMA(9/1) solution, consisting of randomly oriented, well dispersed SWNTs. Pristine SWNTs and acid treated SWNTs solutions were then subjected to controlled AC electric fields in order to explore the formation of aligned SWNT‐filaments. To assess key morphological features of the as‐produced SWNT‐acrylate and SWNT‐COOH‐acrylate nanocomposite samples, such as SWNT distribution and filament thicknesses, transmission optical microscopy has been used to observe the SWNT alignment and filament formation obtained by digitally mapping individual overlapping images. The acquisition of a large field of view with high magnification allows statistically meaningful distribution functions for morphological features to be constructed. Measurements of the as‐produced nanocomposite electrical properties in the SWNT alignment direction and transverse to it were used as a macroscale measure to confirm alignment and contiguity of the SWNT‐filament structure, with polarized Raman spectroscopy used to assess the degree of SWNT alignment at the local microscale level. It is observed that a combination of exposure time to AC electric field, and its frequency, is the key driver of filament thickness and spacing and that in general, the COOH‐SWNTs align to a greater extent than the pristine SWNTs, though they do not form filaments that are as thick and contiguous for the exposure times studied. POLYM. COMPOS., 36:1266–1279, 2015. © 2014 Society of Plastics Engineers  相似文献   
315.
Mobile phone based SCADA for industrial automation   总被引:1,自引:0,他引:1  
SCADA is the acronym for "Supervisory Control And Data Acquisition." SCADA systems are widely used in industry for supervisory control and data acquisition of industrial processes. Conventional SCADA systems use PC, notebook, thin client, and PDA as a client. In this paper, a Java-enabled mobile phone has been used as a client in a sample SCADA application in order to display and supervise the position of a sample prototype crane. The paper presents an actual implementation of the on-line controlling of the prototype crane via mobile phone. The wireless communication between the mobile phone and the SCADA server is performed by means of a base station via general packet radio service (GPRS) and wireless application protocol (WAP). Test results have indicated that the mobile phone based SCADA integration using the GPRS or WAP transfer scheme could enhance the performance of the crane in a day without causing an increase in the response times of SCADA functions. The operator can visualize and modify the plant parameters using his mobile phone, without reaching the site. In this way maintenance costs are reduced and productivity is increased.  相似文献   
316.
The transmission angle is an important parameter for the quality of motion transmission in a mechanism. However, in the literature there is no study available on compliant mechanisms regarding their transmission characteristics. In this paper, the transmission angle of a compliant slider-crank mechanism is introduced. Similarity conditions for the transmission angle of the compliant slider-crank and its rigid body counterpart are devised via two theorems. A real model is manufactured and one of these theorems is verified experimentally. Finally, the effect of eccentric slider on motion transmission quality is discussed. It is believed that newly proposed theorems will find use in the design of compliant slider-crank mechanisms.  相似文献   
317.
The rapid spread of smart wireless devices and expansion of mobile data traffic have increased the interest for efficient traffic offloading techniques in next-generation communication technologies. Wi-Fi offloading uses ubiquitous Wi-Fi technology in order to satisfy the ever increasing demand for mobile bandwidth and therefore is an appropriate methodology for mobile operators. As a matter of fact, design and integration of an offloading technology inside mobile network operators’ infrastructures is a challenging task due to convergence issues between the The 3rd Generation Partnership Project (3GPP) and non-3GPP networks. Therefore, a connectivity management platform is a key element for integrated heterogeneous mobile network operators in order to enable smart and effective offloading. In this paper, analysis, design and integration of a connectivity management platform that uses a Multiple Attribute Decision Making (MADM) algorithm for efficient Wi-Fi Offloading in heterogeneous wireless networks is presented. In order to enhance the end-user’s quality-of-experience (QoE), we have especially concentrated on the benefits that can be achieved by exploiting the presence of integrated service provider platform. Hence, the proposed platform can collect several User Equipment (UE) and network-based attributes via infrastructure and client Application Programming Interfaces (APIs) and decides on the best network access technology (i.e. 3GPP and non-3GPP) to connect to for requested users. We have also proposed multi-user extensions of the MADM algorithms for offloading. Through simulations and experiments, we provide details of the comparisons of the proposed algorithms as well as the sensitivity analysis of the MADM algorithm through an experimental set-up.  相似文献   
318.
Electronic waste (e-waste) grows in parallel with the increasing need for consumer electronics. This, unfortunately, is leading to pollution and massive ecological problems worldwide. A solution to this problem is the use of transient electronics. While transiency of a few components such as transistors and batteries have been proposed already, it is crucial to have all components in electronic devices to be transient. Therefore, the transiency of more electronic components should be demonstrated to alleviate the e-waste problem. Herein, multifunctional nanocomposite electrodes are fabricated using poly(vinyl alcohol), carbon black, and activated carbon. These simple electrodes are then used to fabricate physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors. Transient supercapacitors are used numerous times with excellent supercapacitive behavior before being discarded, which show promise as an energy storage component for transient systems. The fabricated transient triboelectric nanogenerators are used to harvest mechanical energy, eliminated the need for an external power supply, paving the way to self-powered devices, such as a touchpad as demonstrated herein. The fabricated transient capacitive sensors, on the other hand, have shown long linear sensitivities and offered waste-free monitoring of physiological signals and body motions.  相似文献   
319.
Telecommunication Systems - According to International Mobile Telecommunication’s requirements for 2020, next generation cellular networks such as 5G need to meet certain Key Performance...  相似文献   
320.
Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号