首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   13篇
电工技术   2篇
化学工业   47篇
金属工艺   3篇
机械仪表   6篇
建筑科学   8篇
能源动力   9篇
轻工业   30篇
石油天然气   2篇
无线电   1篇
一般工业技术   6篇
自动化技术   14篇
  2024年   1篇
  2023年   6篇
  2022年   8篇
  2021年   23篇
  2020年   13篇
  2019年   11篇
  2018年   14篇
  2017年   10篇
  2016年   11篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
51.
Effect of Fe on microstructure and mechanical properties of the primary AlSi7Mg0.3 alloy and the potential of Mn addition to counteract any adverse effects was investigated in the present work. The primary AlSi7Mg0.3 is a better alloy than its counterpart with twice as much Fe. β platelets grow twice as big when the Fe concentration is doubled. This, in turn, increases shrinkage porosity and leads to a 3-fold decrease in the tensile elongation values. Adding an equal amount of Mn helps to modify the β platelets into more compact α particles and also reduces shrinkage porosity. While these structural changes are reflected by a modest improvement in the mechanical properties, Mn addition fails to offer a full recovery in the ductility of the AlSi7Mg0.3 alloy. Hence, limiting the Fe content of the primary AlSi7Mg0.3 alloy to 0.12 wt% is worthwhile and pays off with superior microstructural features and mechanical properties.  相似文献   
52.
Mg-based hydrogen storage alloys are promising candidates for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties of metastable binary MgyTi1?y (y = 0.80–0.60) and ternary Mg0.63Ti0.27X0.10 (X = Ni and Si) alloys. The preparation of crystalline, single-phase, materials has been accomplished by means of mechanical alloying under controlled atmospheric conditions. Electrodes made of ball-milled Mg0.80Ti0.20 powders show a reduced hydrogen storage capacity in comparison to thin films with the same composition. Interestingly, for a Ti content lower than 30 at.% the reversible storage capacity increases with increasing Ti content to reach a maximum at Mg0.70Ti0.30. The charge transfer coefficients (α) and the rate constants (K1 and K2) of the electrochemical (de)hydrogenation reaction have been obtained, using a theoretical model relating the equilibrium hydrogen pressure, electrochemically determined by Galvanostatic Intermittent Titration Technique (GITT), and the exchange current. The simulation results reveal improved values for Mg0.65Ti0.35 compared to those of Mg0.80Ti0.20. The addition of Ni even more positively affects the hydrogenation kinetics as is evident from the increase in exchange current and, consequently, the significant overpotential decrease.  相似文献   
53.
In this work, characterization of a homopolymer of succinic acid bis(4‐pyrrol‐1‐ylphenyl) ester prepared by galvonastatic polymerization was carried out by direct pyrolysis mass spectrometry. Although decomposition of the monomer yielding mainly butadionic acid and pyrrole occurred under the galvonastatic polymerization conditions, growth of the polymer through the pyrrole moieties was also achieved, yielding a ladder‐type polymer film. The polypyrrole chains contained both quinoid and aromatic units as in the case of polypyrrole, yet the extent of network structure was significantly diminished. A three‐step mechanism is proposed for the thermal decomposition process. The first step involves the cleavage of C4H4NC6H4O end groups. In the second step, decomposition of phenyl ester units and polypyrrole chains having quinoid structure takes place. The final stage of thermal degradation was attributed to decomposition of polypyrrole chains having aromatic structure. Copyright © 2004 Society of Chemical Industry  相似文献   
54.
The aim of this study is to evaluate the biodegradable packaging materials which will be an alternative to traditional synthetic packaging materials. For this purpose, packaging films containing polycaprolactone (PCL), montmorillonite (MMT), and organically modified montmorillonite (OMMT) were prepared by solution casting method, and the mechanical, physical, structural, antimicrobial, and antifungal properties of these films were examined. Cetyl trimethyl ammonium bromide (CTAB) was used for the modification of montmorillonite. The structural properties of the prepared films were characterized by attenuated total reflection-Fourier transform infrared, X-ray powder diffraction, thermogravimetric analysis, and scanning electron microscopy. The PCL/OMMT structure was found to be thermally more stable than the PCL/MMT structure. The addition of OMMT to PCL improved the thermal and mechanical properties of the films compared with the pure PCL and PCL/MMT films. In addition, adding MMT/OMMT to the PCL caused an increase in the hardness of the films. In the antimicrobial analysis, while no inhibition effect was observed in PCL/MMT films, PCL/OMMT films showed inhibition effect against Staphylococcus aureus. Antifungal tests performed with the prepared films showed that the film-wrapped bread did not deteriorate for 40 days. It is thought that PCL/MMT and PCL/OMMT films prepared in this study will provide an advantage in applications as packaging material.  相似文献   
55.
In this study, AB type-heteroarm star-shaped poly(ε-caprolactone)-poly(lactic acid) (PCL-PLA) polymers with polyhedral oligomeric silsesquioxane (POSS) core ((PCL)4-POSS-(PLA)4, coded as SPLA) were synthesized successfully by using ring opening polymerization and click chemistry techniques together. The synthesized polymers were compounded with commercial PLA at different blending ratios (PLA/SPLA = 100/0, 95/5, 90/10, and 80/20% wt). The effects of heteroarm SPLA polymers having different arm lengths (n = 10, 20, 30, and 50) on morphological, mechanical, and thermal behaviors of PLA were investigated. It is determined that SPLA polymers with four PLA and four PCL arms on its structure enhanced mechanical properties of PLA. The tensile modulus decreased, and lowest modulus values were observed with blends prepared at 80/20 ratio. Elongation at break values increased in all blends, maximum increment was observed with 1,4-phenylene diisocyanate (PDI) containing SPLA20 blends prepared at 90/10 ratio. This result showed that SPLA20 had optimum chain length for chain extension reactions of between PLA chains. Besides, a trade compatibilizer PDI was utilized to enhance the intercompatibility of binary polymer blends.  相似文献   
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号