首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   40篇
  国内免费   3篇
电工技术   6篇
化学工业   105篇
金属工艺   11篇
机械仪表   10篇
建筑科学   27篇
能源动力   15篇
轻工业   33篇
水利工程   4篇
石油天然气   11篇
无线电   31篇
一般工业技术   48篇
冶金工业   7篇
原子能技术   3篇
自动化技术   62篇
  2024年   2篇
  2023年   14篇
  2022年   17篇
  2021年   32篇
  2020年   28篇
  2019年   30篇
  2018年   42篇
  2017年   26篇
  2016年   33篇
  2015年   17篇
  2014年   27篇
  2013年   30篇
  2012年   12篇
  2011年   21篇
  2010年   8篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1974年   1篇
排序方式: 共有373条查询结果,搜索用时 31 毫秒
81.
In an effort to produce the materials of next‐generation photoelectronic devices, postsynthesis halide exchange reactions of perovskite quantum dots are explored to achieve enhanced bandgap tunability. However, comprehensive understanding of the multifaceted halide exchange reactions is inhibited by their vast relevant parameter space and complex reaction network. In this work, a facile room‐temperature strategy is presented for rapid halide exchange of inorganic perovskite quantum dots. A comprehensive understanding of the halide exchange reactions is provided by isolating reaction kinetics from precursor mixing rates utilizing a modular microfluidic platform, Quantum Dot Exchanger (QDExer). The effects of ligand composition and halide salt source on the rate and extent of the halide exchange reactions are illustrated. This fluidic platform offers a unique time‐ and material‐efficient approach for studies of solution phase‐processed colloidal nanocrystals beyond those studied here and may accelerate the discovery and optimization of next‐generation materials for energy technologies.  相似文献   
82.
This article presents the design of a planar high gain and wideband antenna using a negative refractive index multilayer superstrate in the X‐band. This meta‐antenna is composed of a four‐layer superstrate placed on a conventional patch antenna. The structure resonates at a frequency of 9.4 GHz. Each layer of the metamaterial superstrate consists of a 7 × 7 array of electric‐field‐coupled resonators, with a negative refractive index of 8.66 to 11.83 GHz. The number of layers and the separation of superstrate layers are simulated and optimized. This metamaterial lens has significantly increased the gain of the patch antenna to 17.1 dBi. Measurements and simulation results proved about 10 dB improvement of the gain.  相似文献   
83.
Two planar antennas based on metamaterial unit‐cells are designed, fabricated, and tested. The unit‐cell configuration consists of H‐shaped or T‐shaped slits and a grounded spiral. The slits essentially behave as series left‐handed capacitance and the spiral as a shunt left‐handed inductance. The unit‐cell was modeled and optimized using commercial 3D full‐wave electromagnetic simulation tools. Both antennas employ two unit‐cells, which are constructed on the Rogers RO4003 substrate with thickness of 0.8 mm and εr = 3.38. The size of H‐shaped and T‐shaped unit cell antennas are 0.06λ0 × 0.02λ0 × 0.003λ0 and 0.05λ0 × 0.02λ0 × 0.002λ0, respectively, where λ0 is the free–space wavelength. The measurements confirm the H–shaped and T–shaped unit‐cell antennas operate across 1.2–6.7 GHz and 1.1–6.85 GHz, respectively, for voltage standing wave ratio (VSWR) < 2, which correspond to fractional bandwidth of ~140% and ~ 145%, respectively. The H‐shaped unit‐cell antenna has gain and efficiency of 2–6.8 dBi and 50–86%, respectively, over its operational range. The T‐shaped unit‐cell antenna exhibits gain and efficiency of 2–7.1 dBi and 48–91%, respectively. The proposed antennas have specifications applicable for integration in UWB wireless communication systems and microwave portable devices. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:88–96, 2016.  相似文献   
84.
For rapid and effective detection of airborne microorganisms, it is preferable to remove dust particles during the air sampling process because they can reduce the detection accuracy of measurements. In this study, a methodology of real-time separation ofaerosolized Staphylococcus epidermidis (S. epidermidis) andpolystyrene latex (PSL) particles of similar size was investigated. These two species represent biological and non-biological particles, respectively. Due to their different relative permittivities, they grasp different numbers of air ions under corona discharge. After these charged particles enter a mobility analyzer with airflow, in which an electric field is applied perpendicular to the airflow, the S. epidermidis and PSL particles separate, due to the difference in their electric mobilities, and exit through two different outlets. Purities and recoveries for S. epidermidis and PSLat their respective outlets were determined with measurements of aerosol number concentrations and ATP bioluminescence intensities at the inlet and two outlets. The results were that purities for PSL and S. epidermidis were 70% and 80%, respectively. This methodology provides a rapid and simple way to increase the detection accuracy of bacterial agents in air.

Copyright © 2017 American Association for Aerosol Research  相似文献   

85.
A novel technique is presented to design highly compact microstrip ultra‐wideband (UWB) bandpass filters that exhibit high selectivity quasi‐elliptical response. The design is based on transversal signal‐interaction concepts that enable the inclusion of single or dual notch‐bands within the filter's passband to eliminate interference from other services that coexist within the UWB spectrum. The filter configuration comprises of two transmission paths which include folded T‐shaped stepped impedance resonators (SIRs) that are capacitively coupled with the input/output lines to enable signal transmission. It is shown that by combining the filters of different passband centre frequencies an UWB filter can be realised with either a single‐ or dual‐notch function. The theoretical performance of the filter is corroborated via measurements to confirm that the proposed filter exhibits UWB passband of 123% for a 3 dB fractional bandwidth, a flat group‐delay with maximum variation of less than 0.3 ns, passband insertion loss less than 0.94 dB, high selectivity, a sharp rejection notch‐band with attenuation of ?23 dB, and a good overall out‐of‐band performance. Furthermore, the filter occupies a significantly small area of 94 mm2 compared with its classical counterparts. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:549–559, 2014.  相似文献   
86.
This paper presents an intelligent method based on Improved Particle Swarm Optimisation to solve a unit commitment problem that takes into account the uncertainty in the demand. This uncertainty is included in the optimisation problem as a joint chance constraint that bounds the minimum value of the probability to jointly meet the deterministic power balance constraints. The demand is modelled as a multivariate, normally distributed, random variable and the correlation among different time periods is also considered. To demonstrate the effectiveness and robustness of the proposed algorithm, a system with 10 thermal and wind units with various conditions is simulated. The results and numerical experiments are compared with other methods to provide valuable information for both operational and planning problems.  相似文献   
87.
This paper presents an innovative machine learning approach for the formulation of load carrying capacity of castellated steel beams (CSB). New design equations were developed to predict the load carrying capacity of CSB using linear genetic programming (LGP), and an integrated search algorithm of genetic programming and simulated annealing, called GSA. The load capacity was formulated in terms of the geometrical and mechanical properties of the castellated beams. An extensive trial study was carried out to select the most relevant input variables for the LGP and GSA models. A comprehensive database was gathered from the literature to develop the models. The generalization capabilities of the models were verified via several criteria. The sensitivity of the failure load of CSB to the influencing variables was examined and discussed. The employed machine learning systems were found to be effective methods for evaluating the failure load of CSB. The prediction performance of the optimal LGP model was found to be better than that of the GSA model.  相似文献   
88.
Mapping fracture characteristics by using seismic acquisition and processing is important not only to identify sweet spots, but also to optimize production, especially for unconventional heavy oil reservoirs. In this experimental work we used five-spot micromodels initially saturated with heavy oil to find the optimum well locations during first-contact miscible displacement. The experiments were performed at a fixed injection rate on fractured micromodels with various patterns. The optimum location for injection/production wells was found in the pattern where fractures make an angle of 45° with the mean flow direction. Moreover, oil recovery was increased with the density, length, level of scattering, and discontinuity of fractures. The analysis of the experimentally measured recovery curve revealed that there are three distinct stages for each displacement. The efficiency of the first stage was found to be dominated by dispersion and diffusion. However, the recovery of the second stage was significantly affected by the fracture orientation. The displacement efficiency of the third stage was controlled by solvent dispersion, which is at maximum for the pattern with higher density, length, scattering, and discontinuity of fractures. Saturation monitoring showed that the fracture geometrical characteristics strongly affected the splitting, spreading, and shielding of the produced fingers and solvent front shape and consequently affected the recovery factor. As a result, five-spot micromodels can be used to investigate the optimum location of injection/production wells during miscible displacements in fractured heavy oil reservoirs.  相似文献   
89.
Measurement of dose distribution in patients during radiotherapy is impossible. The Monte Carlo simulation is an alternative method for dose calculations. In routine radiotherapy, the source-to-surface distance(SSD)method is not practical for an isocentric unit because it requires numerous values of tissue–air ratios and inverse square law. Therefore, this method is time consuming. In this paper, the curves of relative depth doses were obtained for three different SSDs using the MCNP4C Monte Carlo simulation and approximated with a single curve called calibration curve. This curve was compared to the curve obtained by published data, differing in approximately 5% in the worst case. It was also observed that the obtained results were more accurate for distances between-5 and 10 cm from source-to-axis distance.  相似文献   
90.
The effects of different chemical solvents on the technological properties of hemp fibre-reinforced polypropylene composites were evaluated in this experimental work. Composite profiles consisting of hemp fibre and polypropylene at 50% weight ratios, with 2% of coupling agent were fabricated using melt compounding followed by injection moulding. The composite specimens were then immersed in CH3COOH, HNO3, H2SO4, NaOH, NH3, and C6H5NH2 for different time intervals. Then, the weight loss and mechanical strength of samples were measured. Results indicated that the chemical reagents had significant effect on the weight loss of the composites. The weight loss ratio of the control samples was lower than that of those samples exposure to the chemical solvents. The tensile strength and modulus, and impact strength of composite specimens decreased after exposure to the chemical solvents. The highest mechanical reduction was observed in the case of NaOH. SEM micrographs showed that the extent of degradation increased in composites when they are exposed to chemical solvents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号