首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1969篇
  免费   127篇
  国内免费   5篇
电工技术   52篇
综合类   3篇
化学工业   470篇
金属工艺   51篇
机械仪表   71篇
建筑科学   80篇
矿业工程   3篇
能源动力   45篇
轻工业   296篇
水利工程   35篇
石油天然气   8篇
无线电   123篇
一般工业技术   389篇
冶金工业   292篇
原子能技术   24篇
自动化技术   159篇
  2024年   6篇
  2023年   16篇
  2022年   46篇
  2021年   78篇
  2020年   49篇
  2019年   70篇
  2018年   70篇
  2017年   101篇
  2016年   60篇
  2015年   59篇
  2014年   73篇
  2013年   125篇
  2012年   125篇
  2011年   139篇
  2010年   118篇
  2009年   103篇
  2008年   68篇
  2007年   84篇
  2006年   79篇
  2005年   75篇
  2004年   51篇
  2003年   50篇
  2002年   29篇
  2001年   35篇
  2000年   28篇
  1999年   29篇
  1998年   75篇
  1997年   43篇
  1996年   38篇
  1995年   31篇
  1994年   17篇
  1993年   22篇
  1992年   11篇
  1991年   11篇
  1990年   10篇
  1989年   12篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1978年   2篇
  1977年   5篇
  1976年   13篇
  1975年   2篇
  1970年   1篇
  1965年   1篇
排序方式: 共有2101条查询结果,搜索用时 15 毫秒
991.
Semivariogram functions are compared to co-occurrence matrices for classification of digital image texture, and accuracy is assessed using test sites. Images acquired over the following six different spectral bands are used: 1) SPOT HRV, near infrared; 2) Landsat thematic mapper (TM), visible red; 3) India Remote Sensing (IRS) LISS-II, visible green; 4) Magellan, Venus, S-band microwave; 5) shuttle imaging radar (SIR)-C, X-band microwave; 6) SIR-C, L-band microwave. The semivariogram textural measure provides a larger classification accuracy than a classifier based on a co-occurrence matrix for the microwave images and a smaller classification accuracy for the optical images  相似文献   
992.
This paper presents a high-performance torque and flux control strategy for high-power induction motor drives. The control method uses the torque error to control the load angle, obtaining the appropriate flux vector trajectory from which the voltage vector is directly derived based on direct torque control principles. The voltage vector is then generated by an asymmetric cascaded multilevel inverter without need of modulation and filter. Due to the high output quality of the inverter, the torque response presents nearly no ripple. In addition, switching losses are greatly reduced since 80% of the power is delivered by the high-power cell of the asymmetric inverter, which commutates at fundamental frequency. Simulation and experimental results for 81-level inverter are presented.  相似文献   
993.
This paper presents a novel formalized technique for variable tapered buffer design achieving Pareto optimal energy-delay tradeoffs. Our main focus lies on the drivers typically found in embedded SRAMs. Much work has been done for variable tapered buffer design explicitly targeting energy (and/or area) tradeoffs for a given target delay. In contrast, the formalized techniques presented here are capable of providing all existing Pareto configurations achieving optimal energy/delay tradeoffs, and this is applicable for the full range of all possible delay constraints. Based on such techniques, a transistor-level implementation is also presented to allow a discrete set of Pareto configurations (from high-speed to low-energy) to be selected at run-time. This implementation has been validated via SPICE simulations for a 65-nm CMOS technology, confirming that a very wide range in delay (more than a factor 2) and energy consumption (up to 40%) can be achieved at the SRAM level, including process variability impact effects present in CMOS nanometer technologies.  相似文献   
994.
The gate current–voltage characteristic of a high-field stressed metal-oxide-semiconductor structure with trapped charge within the insulator barrier is consistent with a Fowler–Nordheim-type tunneling expression. Instead of considering a correction for the cathode electric field as usual, we use an effective local electric field that takes into account the distortion of the oxide conduction band profile caused by the trapped charge. An energy level at the injecting interface, introduced as an optimization parameter of the model, controls the tunneling distance used for calculating the effective field. Trap generation in the oxide is induced by high-field constant current stress and subsequent electron trapping at different injection levels is monitored by measuring the associated flat band voltage shift. The model applies for positive gate injection regardless the stress polarity and the involved parameters are obtained by fitting the experimental data without invoking any particular theoretical model for the trapping dynamics. In addition, it is shown how the presented model accounts for consistently both the current–voltage and voltage–current characteristics as a function of the injected charge through the oxide.  相似文献   
995.
The coherence between the stimulation signal and the electroencephalogram (EEG) has been used in the detection of evoked responses. The detector's performance, however, depends on both the signal-to-noise ratio (SNR) of the responses and the number of data segments (M) used in coherence estimation. In practical situations, when a given SNR occurs, detection can only be improved by increasing M and hence the total data length. This is particularly relevant when monitoring is the objective. In the present study, we propose a matrix-based algorithm for estimating the multiple coherence of the stimulation signal taking into account a set of N EEG channels as a way of increasing the detection rate for a fixed value of M. Monte Carlo simulations suggest that thresholds for such multivariate detector are the same as those for multiple coherence of Gaussian signals and that using more than six signals is not advisable for improving the detection rate with M = 10. The results with EEG from 12 normal subjects during photic stimulation at 10 Hz showed a maximum detection for N greater than 2 in 58% of the subjects with M = 10, and hence suggest that the proposed multivariate detector is valuable in evoked responses applications.  相似文献   
996.
The Joule heating properties of an ultralight nanocarbon aerogel are investigated with a view to potential applications as energy‐efficient, local gas heater, and other systems. Thermally reduced graphene oxide (rGO) aerogels (10 mg cm?3) with defined shape are produced via emulsion‐templating. Relevant material properties, including thermal conductivity, electrical conductivity and porosity, are assessed. Repeatable Joule heating up to 200 °C at comparatively low voltages (≈1 V) and electrical power inputs (≈2.5 W cm?3) is demonstrated. The steady‐state core and surface temperatures are measured, analyzed and compared to analogous two‐dimensional nanocarbon film heaters. The assessment of temperature uniformity suggests that heat losses are dominated by conductive and convective heat dissipation at the temperature range studied. The radial temperature gradient of an uninsulated, Joule‐heated sample is analyzed to estimate the aerogel's thermal conductivity (around 0.4 W m?1 K?1). Fast initial Joule heating kinetics and cooling rates (up to 10 K s?1) are exploited for rapid and repeatable temperature cycling, important for potential applications as local gas heaters, in catalysis, and for regenerable of solid adsorbents. These principles may be relevant to wide range of nanocarbon networks and applications.  相似文献   
997.
Kefiran from kefir grains, an exopolysaccharide (EPS) produced by lactic acid bacteria (LAB), has received an increasing interest because of its safe status. This natural biopolymer is a water-soluble glucogalactan with probed health-promoting properties. However, its biological performance has yet to be completely recognized and properly exploited. This research was carried out to evaluate the in vitro antioxidant and the in vitro anti-inflammatory properties of Kefiran biopolymer. Regarding antioxidant activity, the results demonstrated that the Kefiran extract possessed the strongest reducing power and superoxide radical scavenging, over hyaluronic acid (HA, gold standard viscosupplementation treatment). This exopolysaccharide showed a distinct antioxidant performance in the majority of in vitro working mechanisms of antioxidant activity comparing to HA. Moreover, Kefiran presented an interesting capacity to scavenge nitric oxide radical comparing to the gold standard that did not present any potency. Finally, the cytotoxic effects of Kefiran extracts on hASCs were also performed and demonstrated no cytotoxic response, ability to improve cellular function of hASCs. This study demonstrated that Kefiran represented a great scavenger for reactive oxygen and nitrogen species and showed also that it could be an excellent candidate to promote tissue repair and regeneration.  相似文献   
998.
There has been a growing interest in using biofunctionalized magnetic particles for cell isolation. This paper describes the synthesis and characterization of magnetite-polymer (Fe3O4-poly-ɛ-caprolactone, magnetite-PCL) microparticles surface functionalized with amino and epoxy groups allowing easy covalent attachment of specific antibodies and subsequent ability to bind target cells. Particles with different sizes (4–135 µm), spherical shape and superparamagnetic behaviour (magnetite content of about 13 wt%) were obtained. The functionalized microparticles presented high protein-binding capacity (coupling efficiency of 47% for epoxy- and 71% for amino-functionalized particles) with a low level of non-specific binding. We have further investigated the influence of initial protein concentration, pH, ionic strength, temperature and incubation time on the capacity of amino-functionalized particles to bind protein molecules. The results showed that maximum protein coupling is rapidly achieved (≤5 h) at pH 5.5 and low ionic strength (0.05 M NaCl). Furthermore, when cultured in direct contact with osteoblast-like cells (Saos-2) or human-derived adipose stem cells (ASCs), the amino-functionalized particles did not affect the proliferation and morphology of the cells. As a proof of principle for the application of magnetic microparticles for cell isolation, CD105 (endoglin) antibody was coupled to the magnetic particle surface to bind subpopulations of human ASCs expressing the CD105 antigen. The isolation of CD105+ ASCs from a heterogeneous cell population was confirmed by flow cytometry analysis. Given the demonstrated potential of functionalized magnetite-PCL microparticles for selective cell isolation, we expect that these particles may be further applied in immuno-magnetic cell separation owing to their versatility and ease of surface modification.  相似文献   
999.
The influence of oxidation of a Ti‐6Al‐4V alloy at 800 °C on its tensile properties at 600 °C has been studied. Specimens of this alloy were oxidized at 800 °C for 0.5, 1, 5, 10, 20 and 40 h. Tensile tests at 600 °C were carried out and the fracture surfaces were also examined. Oxidation of the specimens resulted in the formation of an oxide layer that spalled and another oxide layer that adhered to the substrate. Oxide formation increased with increase in duration of oxidation. In this investigation, density curves of the oxide layer as a function of duration of oxidation at 800 °C were used to identify a parabolic oxide growth law. The results of this study revealed coherence between the experimental data and calculations based on the Pilling‐Bedworth law. The mechanical strength of the Ti‐6Al‐4V alloy did not vary significantly with oxidation, but reduction in cross sectional area with increase in oxide layer thickness, as well as the slope of the stress‐strain curve decreased beyond the ultimate tensile strength. Fracture of the tensile tested specimens was predominantly ductile with microcavities. At certain regions of the oxide layer, brittle fracture with radial cracks was observed indicating intergranular fracture.  相似文献   
1000.
Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 μm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号