首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   44篇
  国内免费   5篇
电工技术   15篇
化学工业   217篇
金属工艺   16篇
机械仪表   29篇
建筑科学   28篇
矿业工程   3篇
能源动力   40篇
轻工业   36篇
水利工程   25篇
石油天然气   10篇
无线电   46篇
一般工业技术   114篇
冶金工业   14篇
原子能技术   4篇
自动化技术   109篇
  2024年   2篇
  2023年   7篇
  2022年   20篇
  2021年   48篇
  2020年   49篇
  2019年   59篇
  2018年   74篇
  2017年   73篇
  2016年   57篇
  2015年   27篇
  2014年   34篇
  2013年   69篇
  2012年   38篇
  2011年   51篇
  2010年   32篇
  2009年   18篇
  2008年   6篇
  2007年   14篇
  2006年   9篇
  2005年   9篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有706条查询结果,搜索用时 15 毫秒
51.
Bulletin of Engineering Geology and the Environment - This work aims to identify fracture pattern and crack growth mode in brittle rocks and solids under induced tensile stresses, and further...  相似文献   
52.
In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized (KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s) of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.  相似文献   
53.
Nowadays, solvent‐free, one‐part cyanoacrylate adhesive is widely used in medicine and dentistry. According to a literature survey done by the authors, there are few papers concentrated on the role of nano‐sized particles on the thermal behavior of cyanoacrylate glue. Thus the main goal of the current research focused on clarifying the role of nano‐sized SiO2 on the thermal behavior of cyanoacrylate. Thermal behavior of all materials including cyanoacrylate and its nanocomposites was studied by using Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The results of DSC analysis showed that an increase in the amount of nano‐sized SiO2 results in decreases in the duration of cyanoacrylate curing, energy release during polymerization, and incubation time of polymerization. Furthermore, the results of TGA tests illustrated that the weight loss of cyanoacrylate strongly depends on the contents of both caffeine and SiO2. In fact, an increase in nano‐sized SiO2 content increases the degradation temperature of cyanoacrylate. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   
54.
Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games   总被引:3,自引:3,他引:0  
In recent years, uneven distribution of available water resources as well as increasing water demands and overexploiting the water resources have brought severe need for transferring water from basins having sufficient water to basins facing water shortages. Therefore, optimal allocation of shared water resources in water transfer projects, considering the utilities of different stakeholders, physical limitations of the system and socioeconomic criteria is an important task. In this paper, a new methodology based on crisp and fuzzy Shapley games is developed for optimal allocation of inter-basin water resources. In the proposed methodology, initial water allocations are obtained using an optimization model considering an equity criterion. In the second step, the stakeholders form crisp coalitions to increase the total net benefit of the system as well as their own benefits and a crisp Shapley Value game is used to reallocate the benefits produced in the crisp coalitions. Lastly, to provide maximum total net benefit, fuzzy coalitions are constituted and the participation rates of water users to fuzzy coalitions are optimized. Then, the total net benefit is reallocated to water users in a rational and equitable way using Fuzzy Shapley Value game. The effectiveness of this method is examined by applying it to a large scale case study of water transfer from the Karoon river basin in southern Iran to the Rafsanjan plain in central Iran.  相似文献   
55.
This study reported the synthesis of fluorescent hydroxyapatite/alginate/carbon quantum dots (HA/Alg/CQDs) nanocomposites via the co-precipitation technique. The N-doped CQDs as a new class of fluorescent materials were prepared by the citric acid pyrolysis method, with an average size around 4 nm. Physical, chemical, and optical properties of the synthesized nanocomposites were investigated by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), UV–visible spectroscopy, and photoluminescence (PL) spectroscopy, respectively. The PL spectroscopy data verified the favorable in vitro luminescent emission of the HA/Alg/CQDs nanocomposites in comparison with HA/Alg and HA samples. The XRD patterns of the prepared samples confirmed the formation of crystalline HA in all composites, possessing a Ca/P ratio around 1.5 as obtained by EDX elemental analysis. The FESEM analysis exhibited HA nanoplates that homogeneously distributed throughout the alginate matrix. Therefore, the synthesized nanocomposites could be regarded as potential trackable drug carriers for hard tissue engineering applications.  相似文献   
56.
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.  相似文献   
57.
58.
59.
Mixed‐halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution‐processed triple‐cation mixed‐halide (Cs0.06MA0.15FA0.79)Pb(Br0.4I0.6)3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar‐equivalent illumination. It is found that the illumination leads to localized surface sites of iodide‐rich perovskite intermixed with passivating PbI2 material. Time‐ and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide‐rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed‐halide mixed‐cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.  相似文献   
60.
A noncovalent functionalization of the edges of reduced graphene oxide (RGO) with β-cyclodextrin-graft-hyperbranched polyglycerol (β-CD-g-HPG) was successfully performed via a host-guest interaction. The results showed that β-CD-g-HPG disperses the graphene sheets better than pure β-CD or HPG. The resulted supramolecular structure is stable in neutral water medium more than one week. However, in acidic medium the host-guest interaction is collapsed and graphene nanosheets precipitate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号