首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   34篇
电工技术   1篇
化学工业   42篇
金属工艺   1篇
机械仪表   2篇
建筑科学   10篇
能源动力   4篇
轻工业   23篇
水利工程   8篇
无线电   28篇
一般工业技术   54篇
冶金工业   52篇
自动化技术   19篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   8篇
  2020年   15篇
  2019年   11篇
  2018年   9篇
  2017年   11篇
  2016年   11篇
  2015年   14篇
  2014年   9篇
  2013年   8篇
  2012年   10篇
  2011年   10篇
  2010年   17篇
  2009年   10篇
  2008年   15篇
  2007年   7篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
31.
A polymeric nanoparticle comprised of surface furan groups is used to bind, by Diels–Alder (DA) coupling chemistry, both targeting anti‐human epidermal growth factor receptor 2 (anti‐HER2) antibodies and chemotherapeutic doxorubicin (DOX) for targeted, intracellular delivery of DOX. In this new approach for delivery, where both chemotherapeutic and targeting ligand are attached, for the first time, to the surface of the delivery vehicle, the nuclear localization of DOX in HER2‐overexpressing breast cancer SKBR‐3 cells is demonstrated, as determined by confocal laser scanning microscopy. Flow cytometric analysis shows that the conjugated DOX maintains its biological function and induces similar apoptotic progression in SKBR‐3 cells as free DOX. The viable cell counts of SKBR‐3 cancer cells following incubation with different nanoparticle formulations demonstrates that the combined DOX and anti‐HER2 nanoparticle is more efficacious than the nanoparticle formulation with either DOX or anti‐HER2 alone. While free DOX shows similar cytotoxicity against both cancerous SKBR‐3 cells and healthy HMEC‐1 cells, the combined DOX‐anti‐HER2 nanoparticle is significantly more cytotoxic against SKBR‐3 cells than HMEC‐1 cells, suggesting the benefit of nanoparticle‐conjugated DOX for cell type‐specific targeting. The DOX‐conjugated immuno‐nanoparticle represents an entirely new method for localized co‐delivery of chemotherapeutics and antibodies.  相似文献   
32.
Lanthanide (Ln)-dependent methanol dehydrogenases (MDHs) have recently been shown to be widespread in methylotrophic bacteria. Along with the core MDH protein, XoxF, these systems contain two other proteins, XoxG (a c-type cytochrome) and XoxJ (a periplasmic binding protein of unknown function), about which little is known. In this work, we have biochemically and structurally characterized these proteins from the methyltroph Methylobacterium extorquens AM1. In contrast to results obtained in an artificial assay system, assays of XoxFs metallated with LaIII, CeIII, and NdIII using their physiological electron acceptor, XoxG, display Ln-independent activities, but the Km for XoxG markedly increases from La to Nd. This result suggests that XoxG′s redox properties are tuned specifically for lighter Lns in XoxF, an interpretation supported by the unusually low reduction potential of XoxG (+172 mV). The X-ray crystal structure of XoxG provides a structural basis for this reduction potential and insight into the XoxG–XoxF interaction. Finally, the X-ray crystal structure of XoxJ reveals a large hydrophobic cleft and suggests a role in the activation of XoxF. These studies enrich our understanding of the underlying chemical principles that enable the activity of XoxF with multiple lanthanides in vitro and in vivo.  相似文献   
33.
Experimental measurements with six impeller types in solid‐liquid suspensions indicate that impeller power draw in the turbulent regime is approximately proportional to the solid‐liquid suspension density when the solids are distributed throughout the liquid; however, the accuracy of this approach is limited and there are clear differences in the behaviours of the various impellers. In general, power draw increases are less than suspension density increases for impellers with large blade‐trailing vortices, while power draw increases are equal to or greater than suspension density increases for impellers with smaller blade‐trailing vortices. The power draw data is well‐described using linear relations between the impeller power number and the density difference correlating parameter proposed by Micheletti et al.,[9] with the slope of the relation being dependent on impeller type. More extensive testing with a pitched‐blade turbine, using a greater variety of solids, found that the relation between the impeller power number and the density difference correlating parameter is independent of particle size for particles as large as 1 mm (1000 microns). For particles larger than 1.7 mm (1700 microns), in addition to suspension density, the solid volume fraction affects the pitched‐blade turbine power number; however, it is difficult to determine if this effect exists at all scales or if it is a result of the large particle size relative to the impeller dimensions in the experimental system. For large particles, the power draw is increased by the addition of neutrally‐buoyant particles that do not change the suspension density, with the magnitude of the increase being dependent on impeller type.  相似文献   
34.
35.
This study was conducted to determine the effect that a popping head (like a rice cake machine), a low-shear and low-water processing technology, has on the concentration of antinutritional factors in chickpeas and red kidney beans. Seeds were popped under several parameters (popping time, sample format and equipment type) and analysed against soaking (1:5 w/v in reverse osmosis water for 24 h), roasting (100 g at 180 °C for 20 min) and boiling (1:5 w/v in reverse osmosis water at 100 ± 1 °C for 1 h) processes. Popping and roasting significantly reduced phytic acid content in chickpeas (6%–22%) and red kidney beans (16%–39%). In contrast, phytic acid content after soaking and boiling was not significantly different to raw seeds. Condensed tannins were significantly reduced in red kidney beans after soaking (74%), boiling (100%) and 4 s popping (28%–42%) treatments and increased in both pulses after roasting (137%) and 8 s popping (21%–47%). Further analysis showed that the soluble phenolic content increased with popping, but total and bound phenolic content was reduced. These results demonstrate that the high temperatures and pressures applied during the popping process effectively reduce antinutritional factors in pulses, compared to conventional processing methods.  相似文献   
36.
We describe the potential anti coronavirus disease 2019 (COVID-19) action of the methide quinone inhibitor, celastrol. The related methide quinone dexamethasone is, so far, among COVID-19 medications perhaps the most effective drug for patients with severe symptoms. We observe a parallel redox biology behavior between the antioxidant action of celastrol when scavenging the superoxide radical, and the adduct formation of celastrol with the main COVID-19 protease. The related molecular mechanism is envisioned using molecular mechanics and dynamics calculations. It proposes a covalent bond between the S(Cys145) amino acid thiolate and the celastrol A ring, assisted by proton transfers by His164 and His41 amino acids, and a π interaction from Met49 to the celastrol B ring. Specifically, celastrol possesses two moieties that are able to independently scavenge the superoxide radical: the carboxylic framework located at ring E, and the methide-quinone ring A. The latter captures the superoxide electron, releasing molecular oxygen, and is the feature of interest that correlates with the mechanism of COVID-19 inhibition. This unusual scavenging of the superoxide radical is described using density functional theory (DFT) methods, and is supported experimentally by cyclic voltammetry and X-ray diffraction.  相似文献   
37.
Cognition, Technology & Work - Trust is a critical construct that influences human–automation interaction in multitasking workspaces involving imperfect automation. Karpinsky et al. (Appl...  相似文献   
38.
39.
40.
Hydrogels are formed using various triggers, including light irradiation, pH adjustment, heating, cooling, or chemical addition. Here, a new method for forming hydrogels is introduced: ultrasound-triggered enzymatic gelation. Specifically, ultrasound is used as a stimulus to liberate liposomal calcium ions, which then trigger the enzymatic activity of transglutaminase. The activated enzyme catalyzes the formation of fibrinogen hydrogels through covalent intermolecular crosslinking. The catalysis and gelation processes are monitored in real time and both the enzyme kinetics and final hydrogel properties are controlled by varying the initial ultrasound exposure time. This technology is extended to microbubble–liposome conjugates, which exhibit a stronger response to the applied acoustic field and are also used for ultrasound-triggered enzymatic hydrogelation. To the best of the knowledge, these results are the first instance in which ultrasound is used as a trigger for either enzyme catalysis or enzymatic hydrogelation. This approach is highly versatile and can be readily applied to different ion-dependent enzymes or gelation systems. Moreover, this work paves the way for the use of ultrasound as a remote trigger for in vivo hydrogelation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号