首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   7篇
电工技术   1篇
化学工业   43篇
金属工艺   1篇
机械仪表   2篇
建筑科学   10篇
能源动力   4篇
轻工业   24篇
水利工程   10篇
无线电   33篇
一般工业技术   57篇
冶金工业   52篇
自动化技术   19篇
  2024年   8篇
  2023年   6篇
  2022年   7篇
  2021年   8篇
  2020年   16篇
  2019年   14篇
  2018年   9篇
  2017年   11篇
  2016年   11篇
  2015年   14篇
  2014年   9篇
  2013年   8篇
  2012年   10篇
  2011年   10篇
  2010年   18篇
  2009年   10篇
  2008年   15篇
  2007年   7篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有256条查询结果,搜索用时 0 毫秒
81.
This research proposes an ensemble method for synergistically combining multiple empirical algorithms to better estimate chlorophyll-a (Chl-a) concentration. In previous studies, different empirical algorithms have been employed separately and a single algorithm was often identified as the most suitable predictor for Chl-a retrieval. Our ensemble method combines different individual algorithms to form an ensemble predictor that exploits advantages of each individual algorithm to maximize the overall estimation accuracy. We evaluated two ensemble predictors: the optimally weighted ensemble predictor and the spectral space partition guided ensemble predictor. The ensemble method has been successfully applied to a Sentinel-2A multispectral image acquired over Harsha Lake, Ohio in 2016. Based on in situ water reference data and satellite imagery, we constructed two ensemble predictors that consist of three individual empirical algorithms/estimators, including 2BDA (two-band algorithm), 3BDA (three-band algorithm), and NDCI (Normalized Difference Chlorophyll Index). For the optimally weighted ensemble predictor, the weights for individual algorithms are computed by solving an overdetermined linear system with the pseudoinverse technique. For the spectral space partition guided ensemble predictor, the rules for partitioning spectral space into spectral regions were established as a decision-tree using the CART method. The optimal Chl-a estimate for a pixel is obtained by selectively using the empirical algorithm in the ensemble that has the highest expected accuracy in the spectral region where the pixel is located. Our assessments suggest that the spectral space partition guided ensemble method performs significantly better than three individual empirical algorithms and also better than the optimally weighted ensemble method.  相似文献   
82.
    
Hybrid self‐assembly has become a reliable approach to synthesize soft materials with multiple levels of structural complexity and synergistic functionality. In this work, photoluminescent graphene quantum dots (GQDs, 2–5 nm) are used for the first time as molecule‐like building blocks to construct self‐assembled hybrid materials for label‐free biosensors. Ionic self‐assembly of disc‐shaped GQDs and charged biopolymers is found to generate a series of hierarchical structures that exhibit aggregation‐induced fluorescence quenching of the GQDs and change the protein/polypeptide secondary structure. The integration of GQDs and biopolymers via self‐assembly offers a flexible toolkit for the design of label‐free biosensors in which the GQDs serve as a fluorescent probe and the biopolymers provide biological function. The versatility of this approach is demonstrated in the detection of glycosaminoglycans (GAGs), pH, and proteases using three strategies: 1) competitive binding of GAGs to biopolymers, 2) pH‐responsive structural changes of polypeptides, and 3) enzymatic hydrolysis of the protein backbone, respectively. It is anticipated that the integrative self‐assembly of biomolecules and GQDs will open up new avenues for the design of multifunctional biomaterials with combined optoelectronic properties and biological applications.  相似文献   
83.
    
Signal peptide (SP) mutations are an infrequent cause of inherited retinal diseases (IRDs). We report the genes currently associated with an IRD that possess an SP sequence and assess the prevalence of these variants in a multi-institutional retrospective review of clinical genetic testing records. The online databases, RetNet and UniProt, were used to determine which IRD genes possess a SP. A multicenter retrospective review was performed to retrieve cases of patients with a confirmed diagnosis of an IRD and a concurrent SP variant. In silico evaluations were performed with MutPred, MutationTaster, and the signal peptide prediction tool, SignalP 6.0. SignalP 6.0 was further used to determine the locations of the three SP regions in each gene: the N-terminal region, hydrophobic core, and C-terminal region. Fifty-six (56) genes currently associated with an IRD possess a SP sequence. Based on the records review, a total of 505 variants were present in the 56 SP-possessing genes. Six (1.18%) of these variants were within the SP sequence and likely associated with the patients’ disease based on in silico predictions and clinical correlation. These six SP variants were in the CRB1 (early-onset retinal dystrophy), NDP (familial exudative vitreoretinopathy) (FEVR), FZD4 (FEVR), EYS (retinitis pigmentosa), and RS1 (X-linked juvenile retinoschisis) genes. It is important to be aware of SP mutations as an exceedingly rare cause of IRDs. Future studies will help refine our understanding of their role in each disease process and assess therapeutic approaches.  相似文献   
84.
    
The versatility and applicability of thermoresponsive polymeric systems have led to great interest and a multitude of publications. Of particular significance, multifunctional poly(N-isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various functional comonomers or based on PNIPAAm combined with nanomaterials exhibiting unique properties. These multifunctional PNIPAAm systems have revolutionized several biomedical fields such as controlled drug delivery, tissue engineering, self-healing materials, and beyond (e.g., environmental treatment applications). Here, we review these multifunctional PNIPAAm-based systems with various cofunctionalities, as well as highlight their unique applications. For instance, addition of hydrophilic or hydrophobic comonomers can allow for polymer lower critical solution temperature modification, which is especially helpful for physiological applications. Natural comonomers with desirable functionalities have also drawn significant attention as pressure surmounts to develop greener, more sustainable materials. Typically, these systems also tend to be more biocompatible and biodegradable and can be advantageous for use in biopharmaceutical and environmental applications. PNIPAAm-based polymeric nanocomposites are reviewed as well, where incorporation of inorganic or carbon nanomaterials creates synergistic systems that tend to be more robust and widely applicable than the individual components. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48770.  相似文献   
85.
    
The neonatal Fc receptor (FcRn) is responsible for recycling of IgG antibodies and albumin throughout the body. This mechanism has been exploited for pharmaceutic delivery across an array of diseases to either enhance or diminish this function. Monoclonal antibodies and albumin-bound nanoparticles are examples of FcRn-dependent anti-cancer therapeutics. Despite its importance in drug delivery, little is known about FcRn expression in circulating immune cells. Through time-of-flight mass cytometry (CyTOF) we were able to characterize FcRn expression in peripheral blood mononuclear cell (PBMC) populations of pancreatic ductal adenocarcinoma (PDAC) patients and non-cancer donors. Furthermore, we were able to replicate these findings in an orthotopic murine model of PDAC. Altogether, we found that in both patients and mice with PDAC, FcRn was elevated in migratory and resident classical dendritic cell type 2 (cDC2) as well as monocytic and granulocytic myeloid-derived suppressor cell (MDSC) populations compared to tumor-free controls. Furthermore, PBMCs from PDAC patients had elevated monocyte, dendritic cells and MDSCs relative to non-cancer donor PBMCs. Future investigations into FcRn activity may further elucidate possible mechanisms of poor efficacy of antibody immunotherapies in patients with PDAC.  相似文献   
86.
    
Epigenetic changes in stroke may revolutionize cell-based therapies aimed at reducing ischemic stroke risk and damage. Epigenetic changes are a novel therapeutic target due to their specificity and potential for reversal. Possible targets for epigenetic modification include DNA methylation and demethylation, post-translational histone modification, and the actions of non-coding RNAs such as microRNAs. Many of these epigenetic modifications have been reported to modulate atherosclerosis development and progression, ultimately contributing to stroke pathogenesis. Furthermore, epigenetics may play a major role in inflammatory responses following stroke. Stem cells for stroke have demonstrated safety in clinical trials for stroke and show therapeutic benefit in pre-clinical studies. The efficacy of these cell-based interventions may be amplified with adjunctive epigenetic modifications. This review advances the role of epigenetics in atherosclerosis and inflammation in the context of stroke, followed by a discussion on current stem cell studies modulating epigenetics to ameliorate stroke damage.  相似文献   
87.
    
Beta glucans are known to have immunomodulatory effects that mediated by a variety of mechanisms. In this article, we describe experiments and simulations suggesting that beta-1,3 glucans may promote activation of T cells by a previously unknown mechanism. First, we find that treatment of a T lymphoblast cell line with beta-1,3 oligoglucan significantly increases mRNA levels of T cell activation-associated cytokines, especially in the presence of the agonistic anti-CD3 antibody. This immunostimulatory activity was observed in the absence of dectin-1, a known receptor for beta-1,3 glucans. To clarify the molecular mechanism underlying this activity, we performed a series of molecular dynamics simulations and free-energy calculations to explore the interaction of beta-1,3 oligoglucans with potential immune receptors. While the simulations reveal little association between beta-1,3 oligoglucan and the immune receptor CD3, we find that beta-1,3 oligoglucans bind to CD28 near the region identified as the binding site for its natural ligands CD80 and CD86. Using a rigorous absolute binding free-energy technique, we calculate a dissociation constant in the low millimolar range for binding of 8-mer beta-1,3 oligoglucan to this site on CD28. The simulations show this binding to be specific, as no such association is computed for alpha-1,4 oligoglucan. This study suggests that beta-1,3 glucans bind to CD28 and may stimulate T cell activation collaboratively with T cell receptor activation, thereby stimulating immune function.  相似文献   
88.
Fibrinogen is the first coagulation protein to reach critically low levels during traumatic haemorrhage. There have been no differential effects on clinical outcomes between the two main sources of fibrinogen replacement: cryoprecipitate and fibrinogen concentrate (Fg-C). However, the constituents of these sources are very different. The aim of this study was to determine whether these give rise to any differences in clot stability that may occur during trauma haemorrhage. Fibrinogen deficient plasma (FDP) was spiked with fibrinogen from cryoprecipitate or Fg-C. A panel of coagulation factors, rotational thromboelastography (ROTEM), thrombin generation (TG), clot lysis and confocal microscopy were performed to measure clot strength and stability. Increasing concentrations of fibrinogen from Fg-C or cryoprecipitate added to FDP strongly correlated with Clauss fibrinogen, demonstrating good recovery of fibrinogen (r2 = 0.99). A marked increase in Factor VIII, XIII and α2-antiplasmin was observed in cryoprecipitate (p < 0.05). Increasing concentrations of fibrinogen from both sources were strongly correlated with ROTEM parameters (r2 = 0.78–0.98). Cryoprecipitate therapy improved TG potential, increased fibrinolytic resistance and formed more homogeneous fibrin clots, compared to Fg-C. In summary, our data indicate that cryoprecipitate may be a superior source of fibrinogen to successfully control bleeding in trauma coagulopathy. However, these different products require evaluation in a clinical setting.  相似文献   
89.
    
Polymeric nanoparticle micelles are formed from amphiphilic polymers with a hydrophobic core and a hydrophilic corona. Often comprised of a biodegradable, biocompatible polymer core and a poly(ethylene glycol) corona, these nanoparticle micelles encapsulate a hydrophobic drug and enable surface modification with targeting ligands. Strategies to enhance hydrophobic drug encapsulation are described as chemistries that facilitate covalent modification with antibodies using water-based click chemistry.  相似文献   
90.
    
The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号