首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7338篇
  免费   643篇
  国内免费   58篇
电工技术   78篇
综合类   26篇
化学工业   1820篇
金属工艺   137篇
机械仪表   322篇
建筑科学   170篇
矿业工程   9篇
能源动力   507篇
轻工业   973篇
水利工程   87篇
石油天然气   42篇
武器工业   2篇
无线电   863篇
一般工业技术   1622篇
冶金工业   127篇
原子能技术   64篇
自动化技术   1190篇
  2024年   38篇
  2023年   241篇
  2022年   500篇
  2021年   880篇
  2020年   549篇
  2019年   615篇
  2018年   575篇
  2017年   504篇
  2016年   508篇
  2015年   322篇
  2014年   428篇
  2013年   603篇
  2012年   381篇
  2011年   484篇
  2010年   276篇
  2009年   226篇
  2008年   150篇
  2007年   138篇
  2006年   76篇
  2005年   45篇
  2004年   52篇
  2003年   53篇
  2002年   38篇
  2001年   26篇
  2000年   31篇
  1999年   25篇
  1998年   29篇
  1997年   19篇
  1996年   23篇
  1995年   22篇
  1994年   16篇
  1993年   17篇
  1992年   11篇
  1991年   13篇
  1990年   7篇
  1989年   8篇
  1988年   12篇
  1987年   9篇
  1986年   9篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   10篇
  1981年   8篇
  1979年   5篇
  1978年   6篇
  1977年   8篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
排序方式: 共有8039条查询结果,搜索用时 15 毫秒
131.
Underwater optical communication (UOC) has attracted considerable interest in the continuous expansion of human activities in marine/ocean environments. The water-durable and self-powered photoelectrodes that act as a battery-free light receiver in UOC are particularly crucial, as they may directly face complex underwater conditions. Emerging photoelectrochemical (PEC)-type photodetectors are appealing owing to their intrinsic aqueous operation characteristics with versatile tunability of photoresponses. Herein, a self-powered PEC photodetector employing n-type gallium nitride (GaN) nanowires as a photoelectrode, which is decorated with an iridium oxide (IrOx) layer to optimize charge transfer dynamics at the GaN/electrolyte interface, is reported. Strikingly, the constructed n-GaN/IrOx photoelectrode breaks the responsivity-bandwidth trade-off limit by simultaneously improving the response speed and responsivity, delivering an ultrafast response speed with response/recovery times of only 2 µs/4 µs while achieving a high responsivity of 110.1 mA W−1. Importantly, the device exhibits a large bandwidth with 3 dB cutoff frequency exceeding 100 kHz in UOC tests, which is one of the highest values among self-powered photodetectors employed in optical communication system.  相似文献   
132.
Extreme environments are often faced in energy, transportation, aerospace, and defense applications and pose a technical challenge in sensing. Piezoelectric sensor based on single-crystalline AlN transducers is developed to address this challenge. The pressure sensor shows high sensitivities of 0.4–0.5 mV per psi up to 900 °C and output voltages from 73.3 to 143.2 mV for input gas pressure range of 50 to 200 psi at 800 °C. The sensitivity and output voltage also exhibit the dependence on temperature due to two origins. A decrease in elastic modulus (Young's modulus) of the diaphragm slightly enhances the sensitivity and the generation of free carriers degrades the voltage output beyond 800 °C, which also matches with theoretical estimation. The performance characteristics of the sensor are also compared with polycrystalline AlN and single-crystalline GaN thin films to investigate the importance of single crystallinity on the piezoelectric effect and bandgap energy-related free carrier generation in piezoelectric devices for high-temperature operation. The operation of the sensor at 900 °C is amongst the highest for pressure sensors and the inherent properties of AlN including chemical and thermal stability and radiation resistance indicate this approach offers a new solution for sensing in extreme environments.  相似文献   
133.
(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.  相似文献   
134.
Learning Management System (LMS) is an application software that is used in automation, delivery, administration, tracking, and reporting of courses and programs in educational sector. The LMS which exploits machine learning (ML) has the ability of accessing user data and exploit it for improving the learning experience. The recently developed artificial intelligence (AI) and ML models helps to accomplish effective performance monitoring for LMS. Among the different processes involved in ML based LMS, feature selection and classification processes find beneficial. In this motivation, this study introduces Glowworm-based Feature Selection with Machine Learning Enabled Performance Monitoring (GSO-MFWELM) technique for LMS. The key objective of the proposed GSO-MFWELM technique is to effectually monitor the performance in LMS. The proposed GSO-MFWELM technique involves GSO-based feature selection technique to select the optimal features. Besides, Weighted Extreme Learning Machine (WELM) model is applied for classification process whereas the parameters involved in WELM model are optimally fine-tuned with the help of Mayfly Optimization (MFO) algorithm. The design of GSO and MFO techniques result in reduced computation complexity and improved classification performance. The presented GSO-MFWELM technique was validated for its performance against benchmark dataset and the results were inspected under several aspects. The simulation results established the supremacy of GSO-MFWELM technique over recent approaches with the maximum classification accuracy of 0.9589.  相似文献   
135.
Breast cancer (BC) is a most spreading and deadly cancerous malady which is mostly diagnosed in middle-aged women worldwide and effecting beyond a half-million people every year. The BC positive newly diagnosed cases in 2018 reached 2.1 million around the world with a death rate of 11.6% of total cases. Early diagnosis and detection of breast cancer disease with proper treatment may reduce the number of deaths. The gold standard for BC detection is biopsy analysis which needs an expert for correct diagnosis. Manual diagnosis of BC is a complex and challenging task. This work proposed a deep learning-based (DL) solution for the early detection of this deadly disease from histopathology images. To evaluate the robustness of the proposed method a large publically available breast histopathology image database containing a total of 277524 histopathology images is utilized. The proposed automatic diagnosis of BC detection and classification mainly involves three steps. Initially, a DL model is proposed for feature extraction. Secondly, the extracted feature vector (FV) is passed to the proposed novel feature selection (FS) framework for the best FS. Finally, for the classification of BC into invasive ductal carcinoma (IDC) and normal class different machine learning (ML) algorithms are used. Experimental outcomes of the proposed methodology achieved the highest accuracy of 92.7% which shows that the proposed technique can successfully be implemented for BC detection to aid the pathologists in the early and accurate diagnosis of BC.  相似文献   
136.
Artificial Life and Robotics - Although the design of the reward function in reinforcement learning is important, it is difficult to design a system that can adapt to a variety of environments and...  相似文献   
137.
International Journal of Information Security - Benefiting from the high-speed transmission and super-low latency, the Fifth Generation (5G) networks are playing an important role in contemporary...  相似文献   
138.
This paper investigates a local observer-based leader-following consensus control of one-sided Lipschitz (OSL) multi-agent systems (MASs) under input saturation. The proposed consensus control scheme has been formulated by using the OSL property, input saturation, directed graphs, estimated states, and quadratic inner-boundedness condition by attaining the regional stability. It is assumed that the graph always includes a (directed) spanning tree with respect to the leader root to develop matrix inequalities for investigating parameters of the proposed observer and consensus protocols. Further, a new observer-based consensus tracking method for MASs with saturation, concerning independent topologies for communicating outputs and estimates over the network, is explored to deal with a more perplexing and realistic situation. In contrast to the traditional methods, the proposed consensus approach considers output feedback and deals with the input saturation for a generalized class of nonlinear systems. The efficiency of the obtained results is illustrated via application to a group of five moving agents in the Cartesian coordinates.  相似文献   
139.

The edge computing model offers an ultimate platform to support scientific and real-time workflow-based applications over the edge of the network. However, scientific workflow scheduling and execution still facing challenges such as response time management and latency time. This leads to deal with the acquisition delay of servers, deployed at the edge of a network and reduces the overall completion time of workflow. Previous studies show that existing scheduling methods consider the static performance of the server and ignore the impact of resource acquisition delay when scheduling workflow tasks. Our proposed method presented a meta-heuristic algorithm to schedule the scientific workflow and minimize the overall completion time by properly managing the acquisition and transmission delays. We carry out extensive experiments and evaluations based on commercial clouds and various scientific workflow templates. The proposed method has approximately 7.7% better performance than the baseline algorithms, particularly in overall deadline constraint that gives a success rate.

  相似文献   
140.
Journal of Signal Processing Systems - Segmentation of thigh tissues (muscle, fat, inter-muscular adipose tissue (IMAT), bone, and bone marrow) from magnetic resonance imaging (MRI) scans is useful...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号