首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2524篇
  免费   123篇
  国内免费   17篇
电工技术   31篇
综合类   14篇
化学工业   538篇
金属工艺   77篇
机械仪表   96篇
建筑科学   80篇
矿业工程   8篇
能源动力   219篇
轻工业   377篇
水利工程   20篇
石油天然气   26篇
无线电   175篇
一般工业技术   530篇
冶金工业   98篇
原子能技术   38篇
自动化技术   337篇
  2024年   10篇
  2023年   45篇
  2022年   88篇
  2021年   109篇
  2020年   100篇
  2019年   104篇
  2018年   133篇
  2017年   125篇
  2016年   115篇
  2015年   82篇
  2014年   98篇
  2013年   236篇
  2012年   161篇
  2011年   168篇
  2010年   114篇
  2009年   153篇
  2008年   161篇
  2007年   113篇
  2006年   86篇
  2005年   67篇
  2004年   50篇
  2003年   45篇
  2002年   28篇
  2001年   27篇
  2000年   21篇
  1999年   17篇
  1998年   35篇
  1997年   22篇
  1996年   11篇
  1995年   6篇
  1994年   9篇
  1993年   14篇
  1992年   15篇
  1991年   12篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   7篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1970年   3篇
  1968年   1篇
  1967年   3篇
排序方式: 共有2664条查询结果,搜索用时 0 毫秒
991.
In this investigation, an analytical elastic–plastic solution was proposed for a single-lap joint. A ductile adhesive joint material was used as the bond material. FM-73 was utilized in the study. The influence of the bending moment was neglected in the solution. The solution was modified for shear stresses. The analytical solution was compared with the FEM solution. An ANSYS 10.0 solution was employed in the numerical solution. Both solutions were compared with each other. These two solutions produced close agreements.  相似文献   
992.
The aim of the study is to evaluate the influence of surface-treatment methods with and without the use of a retention hole on the shear bond strength of a resin composite adhered to amalgam using an adhesive system. Amalgam specimens were divided into six groups. Group 1 (Bur) specimens were roughened with a diamond bur, Group 2 (Al2O3) specimens were sandblasted with a 50?μm aluminum oxide powder, Group 3 (CoJet®) specimens were sandblasted with 30?μm CoJet® Sand, Group 4 (Bur?+?Rh) specimen surfaces were prepared with a retention hole 1?mm in diameter and 1?mm deep and roughened with a diamond bur, Group 5 (Al2O3?+?Rh) specimens were also prepared with a retention hole and sandblasted with 50?μm aluminum oxide powder, and Group 6 (CoJet®?+?Rh) surfaces were prepared with a retention hole and sandblasted with 30?μm CoJet® Sand. Resin composite cylinders were bonded onto the amalgam surfaces using Xeno® IV, Optibond? All-In-One, Clearfil? SE Bond, Adper? Single Bond Plus, and Scotchbond? Multi-Purpose adhesive systems. In addition, silane (Monobond S) was used for Groups 5 and 6. The shear bond was determined and statistically analyzed using two-way analysis of variance and post hoc Tukey’s tests (p?≤?0.05). The surface treatment significantly affected the shear bond strengths of the adhesive systems. The shear bond strengths of Optibond? All-In-One (2.661?±?0.48?MPa) in Group 1 and Scotchbond Multi-Purpose (3.818?±?0.98) in Group 4 were significantly higher than those of the other adhesive systems. Silica coating of the amalgam surface significantly improved the shear bond strength of the resin composites. The addition of a retention hole on the amalgam affects the bonding strength of the composite adhesion.  相似文献   
993.
In this work, dynamic analysis and control of a packed distillation column have been utilized theoretically and experimentally. In theoretical studies, two types of mathematical models stagewise (Frank model) and partial differential approaches (back-mixing model), were used. Packed distillation uses 1400 mm packing height, and packing type is rashing ring with 20-15 mm diameter. The reboiler was made from a 13 L glass container. Reflux ratio was adjusted by an on-line computer. The system temperature was measured with six thermocouples. For control studies, the reflux ratio and the reboiler heat dutywere chosen as manipulated variables. Perturbation in feed composition was utilized as the disturbance. Decoupling multivariable dynamic matrix control (DDMC) and Nondecoupling multivariable dynamic matrix control (NDMC) of overhead and bottom compositions were applied for control studies. Performance of the control system was tested by using an integral absolute error (IAE) criterion and it was also compared with decoupling multivariable PID control (DPID) and Nondecoupling multivariable PID control (NDPID).  相似文献   
994.
Bake-hardening behaviour of carbon steel with different martensite morphologies and volume fraction was investigated.The specimens with fibrous and bulky martensite were prestrained in tension by 4%.After this,they were unloaded and bake hardened at 180 °C for 10–160 min.It was found that dual-phase steel samples which were bake hardened at 180 °C for 20 min showed an increase in the yield stress(YS) and ultimate tensile stress(UTS) but a decrease in ductility.Further increase in the bake-hardening time of 80 or 160 min has reduced the YS and UTS,but increased the ductility.Dr(increase in stress due to bake hardening),YS and UTS values are higher for the microstructure containing fibrous martensite compared to the microstructure-containing bulky martensite.It was also observed that at a given baking temperature Dr,YS and UTS increased by volume of martensite.  相似文献   
995.
996.
A comprehensive model based on the Navier-Stokes equation and particle tracking method is used to study the effervescent atomization impinging spray, and another model is used to establish the relationship between the droplet velocity near the plate and the different operating conditions. The models and numerical code are validated by comparing the numerical results with the published experimental results. The effects of air-to-liquid ratio, nozzle diameter, liquid mass flow rate, and the position of impinging plate on the Weber number and K number as well as the droplet deposition onto the plate are discussed. The results show that the droplet velocity near the plate increases with increasing air-to-liquid ratio and liquid mass flow rate, and with decreasing nozzle diameter and axial distance from the nozzle exit to the plate. The droplet diameter near the plate increases with increasing axial distance from the nozzle exit to the plate, and with decreasing air-to-liquid ratio. As a function of the nozzle diameter and liquid mass flow rate, the variation of droplet diameter is not monotonous and the effect of liquid mass flow rate on the droplet diameter is insignificant. In the studied operating conditions, it is difficult for the droplet to rebound off the plate when impinging on the plate but it is easier for the droplet to splash. In order to create a condition which can benefit the droplet deposition when impinging on the plate, the suggested ways are to reduce the air-to-liquid ratio and liquid mass flow rate, increase the nozzle diameter, and select a suitable range of axial distance from the nozzle exit to the plate.  相似文献   
997.
Mg2Ni, Mg1.5Al0.5Ni, Mg1.5Zr0.5Ni, Mg1.5Ti0.5Ni, Mg1.5Zr0.25Al0.25Ni, Mg1.5Zr0.25Ti0.25Ni and Mg1.5Ti0.25Al0.25Ni alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that while Al was retarding, Zr and Ti were facilitating the amorphization of Mg2Ni phase. The initial discharge capacities of Mg1.5Ti0.5Ni, Mg1.5Zr0.5Ni and Mg1.5Al0.5Ni alloys were 414, 322 and 166 mA h g−1, respectively. Although Mg1.5Al0.5Ni alloy had very low initial discharge capacity, the capacity retaining rate of this alloy was much better than those of Ti- and Zr-including alloys. The potentiodyanamic polarization experiments in 6 M KOH solution presented that Mg was passive and Ni was immune in the charge/discharge potential range (−1.0 VHg/HgO and −0.5 VHg/HgO). At the same conditions Ti and Zr had moderate, and Al had extremely higher dissolution rates. The analysis by the electrochemical impedance spectroscopy revealed that the increase in the charge transfer resistance of Mg1.5Al0.5Ni alloy was relatively low with the increase in depth of discharge. This observation was attributed to the formation of the porous unstable Mg(OH)2 layer due to the high rate dissolution of the disseminated Al2O3 and thus the exposition of the underlying electro-catalytically active Ni sites. The charge transfer resistance of Mg1.5Ti0.5Ni alloy increased sharply with the increase in depth of discharge possibly due to the stabilizing effect of Ti-oxide on Mg(OH)2. The presence of Ti-oxide, however, was predicted to make Mg(OH)2 barrier layer more penetrable by hydrogen atoms, since the increased stability of the surface layer the cyclic stability of Mg1.5Ti0.5Ni alloy was relatively satisfactory.  相似文献   
998.
The study was carried out for beneficiation of Makarwal coal using soybean oil as agglomerant. The effect of six parameters – pH, mesh size of coal particles, slurry ratio, stirring speed, soybean oil concentration, and time of agglomeration – was investigated to reduce ash and sulfur from Makarwal coal and to enhance the gross calorific value. In the cleaned product obtained after the agglomeration process, the gross calorific value was increased from 4900 to 7115 Kcal/kg. The ash of agglomerates was reduced from 30% to 7.5% and sulfur was reduced from 5.4% to 2.0% The optimum operating conditions were concentration of soybean oil 10 mL, pH 9, stirring speed 2800 rpm, mesh size 200, coal to water ratio of 15:450 (W/V), and time of agglomeration 20 min. Significant reduction in ash and sulfur showed the effectiveness for agglomeration of Makarwal coal using soybean oil as the agglomerant. The final product thus obtained may be used efficiently in various energy recovery schemes.  相似文献   
999.
This study investigates the microstructure, electrical, corrosion, and mechanical properties of plate-shaped aluminum-copper couple produced using the explosive welding method. Mechanical tests, including hardness, tensile, tensile-shear, and impact test, concluded that the Al-Cu bimetal had an acceptable joint resistance. In this study, local intermetallic regions formed on the interface of the joint of the aluminum-copper bimetal, produced using the explosive welding technique. However, the formed intermetallic regions had no significant effect on the mechanical properties of the joint, except for increasing its hardness. According to electrical conductivity tests, the Al-Cu bimetal had an average electrical conductivity in comparison to the electrical conductivity of aluminum and copper, which were the original materials forming the joint. According to the results of electro-chemical corrosion test, during which galvanic corrosion formed, the Al side of the Al-Cu bimetal was more anodic due to its high electronegativity; as a result, it was exposed to more corrosion in comparison to the copper side.  相似文献   
1000.
In this study, surfaces of multiwalled carbon nanotubes (CNTs) were functionalized with poly(hexafluorobutyl acrylate) (PHFBA) thin film using a rotating-bed plasma-enhanced chemical vapor deposition (PECVD) method without imparting any defects on their surfaces. Polyacrylonitrile (PAN) electrospun polymer fiber mats and composite fiber mats with CNTs and functionalized CNTs (f-CNTs) were prepared. The wettability and chemical and morphological properties of the synthesized fiber mats were investigated, and the dispersion of CNTs and f-CNTs in the polymer matrix was compared according to the contact angle results of electrospun polymer mats. According to the chemical and morphological characterization results, PHFBA-coated CNTs were dispersed more uniformly in the polymer matrix than the uncoated CNTs. The f-CNTs/PAN composite fiber mat exhibits a lower surface energy than the pristine CNTs/PAN fiber mat. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47768.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号