首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   33篇
  国内免费   2篇
电工技术   3篇
综合类   2篇
化学工业   101篇
金属工艺   11篇
机械仪表   14篇
建筑科学   10篇
能源动力   52篇
轻工业   25篇
水利工程   3篇
无线电   58篇
一般工业技术   139篇
冶金工业   35篇
原子能技术   19篇
自动化技术   96篇
  2024年   1篇
  2023年   13篇
  2022年   39篇
  2021年   33篇
  2020年   25篇
  2019年   24篇
  2018年   26篇
  2017年   22篇
  2016年   30篇
  2015年   26篇
  2014年   28篇
  2013年   49篇
  2012年   31篇
  2011年   20篇
  2010年   31篇
  2009年   23篇
  2008年   20篇
  2007年   20篇
  2006年   8篇
  2005年   10篇
  2004年   15篇
  2003年   5篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1981年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1968年   1篇
排序方式: 共有568条查询结果,搜索用时 31 毫秒
101.
Novel sulfonated poly(ether ether ketone) (PEEK) copolymers were prepared using a low-viscosity grade PEEK powder. The TGA studies indicated that SPEEK membranes with up to 75% DS have enough thermal stability. The highest conductivity of 2.176 × 10?2 S cm?1 has been observed at 100°C for SP96 (DS = 72%). Compared to Nafion-15, SP72 exhibits much higher conductivity at all the temperatures considered. The water sorption experiments indicated that the maximum water uptake was 3.92% for SP24 and it was 60% for SP120. It was observed that the increase in the water content in a membrane caused a decrease in the diffusion coefficient.  相似文献   
102.
The effect of silane treatments on the water absorption properties of mercerized bamboo matting reinforced polyester composites were investigated. Treatments using γ-Aminopropyltriethoxy silane, 3-trimethoxysilylpropyl methacrylate, Vinyltris(2-methoxyethoxy)silane, Bis[3-(triethoxysilyl)propyl] tetrasulfide, 3-aminopropyltrimethoxy silane and n-Octyltrimethoxy silane were carried out to improve the water resistant property of the bamboo fibers. Water absorption in the composites was studied by long-term immersion and 2 h boiling in distilled water. The process of absorption of water was found to follow the kinetics and mechanism described by Fick's theory. Alkali treatment results in reduction of water absorption from 51% to 35%. Further reduction is observed with silane treatment. Water absorption varies between 19% and 44%, the minimum being for aminopropyl triethoxy silane-treated composites.  相似文献   
103.
The main objective of safety analysis is to demonstrate in a robust way that all safety requirements are met, i.e. sufficient margins exist between real values of important parameters and their threshold values at which damage of the barriers against release of radioactivity would occur. As stated in the IAEA Safety Requirements for Design of NPPs “a safety analysis of the plant design shall be conducted in which methods of both deterministic and probabilistic analysis shall be applied”. It is required that “the computer programs, analytical methods and plant models used in the safety analysis shall be verified and validated, and adequate consideration shall be given to uncertainties”. Uncertainties are present in calculations due to the computer codes, initial and boundary conditions, plant state, fuel parameters, scaling and numerical solution algorithm.  相似文献   
104.
The properties of the pellets and their microstructure mainly depend on the raw material mix proportion, raw material chemical composition and the physicochemical conditions like the temperature and oxygen partial pressure within the induration machine. The pelletising plant products are in the size range of 8 to 16 mm. With increasing pellet size, the sintering intensity, thermo‐chemical conditions and formation of different phases vary across its cross section. The time required for varies reactions within the pellet is directly proportional to the pellet size. Because of differences in pellet size, the reduction and oxidation process takes place under different conditions resulting in different phases and microstructures. In this work, detailed studies were carried out on pellets of different size (8 to 16 mm) produced from a 4.2 Mtpa pellet plant for their physical, metallurgical and microstructural properties. It was observed that the pellets in the size range of +8 to ‐12 mm showed good strength and lower RDI. It was observed that the amount of hematite, magnetite, porosity, pore density, pore size and slag phase play a significant role on pellet strength and RDI.  相似文献   
105.
Hydraulic Conductivity of MSW in Landfills   总被引:1,自引:0,他引:1  
This paper presents a laboratory investigation of hydraulic conductivity of municipal solid waste (MSW) in landfills and provides a comparative assessment of measured hydraulic conductivity values with those reported in the literature based on laboratory and field studies. A series of laboratory tests was conducted using shredded fresh and landfilled MSW from the Orchard Hills landfill (Illinois, United States) using two different small-scale and large-scale rigid-wall permeameters and a small-scale triaxial permeameter. Fresh waste was collected from the working phase, while the landfilled waste was exhumed from a borehole in a landfill cell subjected to leachate recirculation for approximately 1.5 years. The hydraulic conductivity tests conducted on fresh MSW using small-scale rigid-wall permeameter resulted in a range of hydraulic conductivity 2.8×10?3–11.8×10?3?cm/s with dry unit weight varied in a narrow range between 3.9–5.1?kN/m3. The landfilled MSW tested using the same permeameter produced results between 0.6×10?3–3.0×10?3?cm/s for 4.5–5.5?kN/m3 dry unit weights. The hydraulic conductivity obtained from large-scale rigid-wall permeameter tests decreased with the increase in normal stress for both fresh and landfilled waste. The hydraulic conductivity for fresh MSW ranged from 0.2 cm/s for 4.1?kN/m3 dry unit weight (under zero vertical stress) and then decreased to 4.9×10?5?cm/s for 13.3?kN/m3 dry unit weight (under the maximum applied normal stress of 276 kPa). The hydraulic conductivity of the landfilled MSW decreased from 0.2 cm/s to 7.8×10?5?cm/s when the dry unit weight increased from 3.2 to 9.6?kN/m3. The results clearly demonstrated that the hydraulic conductivity of MSW can be significantly influenced by vertical stress and it is mainly attributed to the increase in density leading to low void ratio. In small-scale triaxial permeameter, when the confining pressure was increased from 69 to 276 kPa the hydraulic conductivity decreased from approximately 10?4?to?10?6?cm/s, which is much lower than those determined from rigid-wall permeameter tests. The published field MSW hydraulic conductivities are found to be higher than the laboratory results. Landfilled MSW possesses lower hydraulic conductivity than fresh MSW due to increased finer particles resulting from degradation. The decreasing hydraulic conductivity with increasing dry unit weight is expressed by an exponential decay function.  相似文献   
106.
This letter analyzes an all-optical packet switch based on fiber loop buffer memory (FLBM). The number of recirculations of a packet in the fiber loop is limited by noise constraints whereas the total number of packets stored in the fiber loop is constrained by the number of available wavelengths. The switch operates as an output-queued switch with these constraints. We analyze this switch for its blocking performance for incoming packets  相似文献   
107.
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.  相似文献   
108.
Many models of various non-Newtonian fluid flows for different geometries are available for analyzing the mass and heat transfer. Nevertheless, for researchers, it is challenging to choose the most suitable model for a specific geometry. Here, we have adopted a modified Buongiorno model to explore the impact of activation energy on the Casson hybrid nanofluid flow over an upward/downward-moving rotating disk filled with the gyrotactic microorganisms. Moreover, the external magnetic field can establish the magnetic effect, which normalizes the features of heat, mass transfer, and fluid flow. Here, we used silver and copper as nanoparticles suspended in human blood as the carrier fluid. The modeled partial differential equations are converted to ordinary differential equations by opting suitable similarity variables. The numerical solutions of these reduced equations are attained by means of Runge–Kutta–Fehlberg fourth-fifth-order method by adopting a shooting scheme. An investigation of the attained outcomes reveals that the flow field is affected appreciably by the activation energy, bioconvection, and magnetic effect. Peclet and concentration difference numbers diminish the microorganism's profile. A rise in values of the Brownian motion parameter leads to an increase in the rate of heat transfer.  相似文献   
109.
Fischer-Tropsch (FT) process has great potential to accomplish energy security but also for utilizing greenhouse gases to address the energy problem. Different kinds of feedstocks like coal, biomass (via gasification), CO2, methane (via reforming), and nonconventional energy sources are used to obtain the syn-gas (CO and H2). The formation of hydrocarbons in the FT process follows ASF distribution over the majority of the catalysts. It can be overcome by the application of a suitable catalyst, controlling the active metal interaction with the support and interaction of formed hydrocarbon with the support. The ratio of syn-gas is important to maintain the desired conversion and to have more selectivity towards C5+ products. Increase in the H2: CO ratios in the feed increases C5+ products and methane decreases. Whereas with the decrease in the ratios increases undesirable reactions and methane formation. In this article, we have discussed the recent literature from the viewpoint of increasing the C5+ selectivity. Support has a profound influence on product distribution. With the application of suitable support and controlling the interaction of the active sites yields the good CO conversion with fewer lighters and higher C5+ hydrocarbons.  相似文献   
110.
The analysis of hydromagnetic flow has been a concern of consideration for research scientists and engineers. In this treatise, the unsteady hydromagnetic free convective flow of an incompressible, viscous, and electrically conducting fluid and heat transfer in a vertical cylinder with Hall effects and transverse magnetic field, in the presence of heat source and sink, is studied. Exact solutions of dimensionless unsteady governing equations are obtained by using the Laplace transform technique. Transient fluid velocity and temperature field are depicted by graphs, whereas heat transfer rate, mass flux, and skin-friction are computed in a tabular form for different physical parametric values, such as the source/sink parameter, Hall current parameter, Prandtl number, and Hartmann number. The valuable result from the investigation is that the Hall parameter slightly accelerates the fluid velocity and it provides resistance to the skin friction at the cylindrical surface. Moreover, it is noticeable that temperature as well as velocity enhances and finally gets to its steady state with time. To be noted, the Hall effects have been widely applied in numerous experimental engineering applications, such as constrictions of turbines, Hall accelerators, Hall sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号