首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   32篇
电工技术   4篇
综合类   1篇
化学工业   109篇
金属工艺   5篇
机械仪表   10篇
建筑科学   55篇
矿业工程   1篇
能源动力   22篇
轻工业   54篇
水利工程   3篇
石油天然气   1篇
无线电   60篇
一般工业技术   119篇
冶金工业   24篇
原子能技术   3篇
自动化技术   83篇
  2023年   11篇
  2022年   10篇
  2021年   26篇
  2020年   14篇
  2019年   14篇
  2018年   25篇
  2017年   14篇
  2016年   16篇
  2015年   15篇
  2014年   23篇
  2013年   28篇
  2012年   41篇
  2011年   46篇
  2010年   24篇
  2009年   27篇
  2008年   27篇
  2007年   29篇
  2006年   27篇
  2005年   31篇
  2004年   19篇
  2003年   15篇
  2002年   12篇
  2001年   4篇
  2000年   9篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1972年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有554条查询结果,搜索用时 0 毫秒
541.
The autotrophic two-species biofilm from the packed bed reactor of a life-support system, containing Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25391, was analysed after 4.8 years of continuous operation performing complete nitrification. Real-time quantitative polymerase chain reaction (Q-PCR) was used to quantify N. europaea and N. winogradskyi along the vertical axis of the reactor, revealing a spatial segregation of N. europaea and N. winogradskyi. The main parameters influencing the spatial segregation of both nitrifiers along the bed were assessed through a multi-species one-dimensional biofilm model generated with AQUASIM software. The factor that contributed the most to this distribution profile was a small deviation from the flow pattern of a perfectly mixed tank towards plug-flow. The results indicate that the model can estimate the impact of specific biofilm parameters and predict the nitrification efficiency and population dynamics of a multispecies biofilm.  相似文献   
542.
Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO2 precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO2-CO3 ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO2-CO3 species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(III) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems.  相似文献   
543.

Objective

Bone density is distributed in a complex network of interconnecting trabecular plates and rods that are interspersed with bone marrow. A computational model to assess the dependence of the relaxation rate on the geometry of bone can consider the distribution of bone material in the form of two components: cylinders and open walls (walls with gaps). We investigate whether the experimentally known dependence of the transverse relaxation rate on the trabecular bone structure can be usefully interpreted in terms of these two components.

Materials and methods

We established a computer model based on an elementary computational cell. The model includes a variable number of open walls and infinitely long cylinders as well as multiple geometric parameters. The transverse relaxation rate is computed as a function of these parameters. Within the model, increasing the trabecular spacing with a fixed trabecular radius is equivalent to thinning the trabeculae while maintaining constant spacing.

Results

Increasing the number of cylinder and wall gap elements beyond their nearest neighbors does not change the transverse relaxation rate. Although the absolute contribution to the relaxation due to open walls is on average more important than that due to cylinders, the latter drops off rapidly. The change on transverse relaxation rate is larger for changing cylinder geometry than for changing wall geometry, as it can be seen from the effect on the relaxation rate when trabecular spacing is varied, compared to varying the size of wall gaps.

Conclusion

Our results provide strong evidence that trabecular thinning, which is associated with increasing age, decreases the relaxation rates. The effect of thinning plates and rods on the transverse relaxation can be understood in terms of simple cylinders and open walls. A reduction in the relaxation rate can be seen as an indication of thinning cylinders, corresponding to reduced bone stability and ultimately, osteoporosis.  相似文献   
544.
Pharmaceutical and personal care products, biocides and iodinated contrast media (ICM) are persistent compounds, which appear in ng to μg L−1 in secondary effluents of sewage treatment plants (STPs). In this work, biogenic metals manganese oxides (BioMnOx) and bio-palladium (Bio-Pd) were applied in lab-scale membrane bioreactors (MBR) as oxidative and reductive technologies, respectively, to remove micropollutants from STP-effluent. From the 29 substances detected in the STP-effluent, 14 were eliminated in the BioMnOx-MBR: ibuprofen (>95%), naproxen (>95%), diuron (>94%), codeine (>93%), N-acetyl-sulfamethoxazole (92%), chlorophene (>89%), diclofenac (86%), mecoprop (81%), triclosan (>78%), clarithromycin, (75%), iohexol (72%), iopromide (68%), iomeprol (63%) and sulfamethoxazole (52%). The putative removal mechanisms were the chemical oxidation by BioMnOx and/or the biological removal by Pseudomonas putida and associated bacteria in the enriched biofilm. Yet, the removal rates (highest value: 2.6 μg diclofenac L−1 d−1) need to improve by a factor 10 in order to be competitive with ozonation. ICM, persistent towards oxidative techniques, were successfully dehalogenated with a novel reductive technique using Bio-Pd as a nanosized catalyst in an MBR. Iomeprol, iopromide and iohexol were removed for >97% and the more recalcitrant diatrizoate for 90%. The conditions favorable for microbial H2-production enabling the charging of the Pd catalyst, were shown to be important for the removal of ICM. Overall, the results indicate that Mn oxide and Pd coupled to microbial catalysis offer novel potential for advanced water treatment.  相似文献   
545.
We demonstrate a small molecule solution processed hole interfacial layer approach to improve the dark current characteristics of polymer photodiodes. The two hole blocking materials under investigation 3-phenyl-4(1′-naphthyl)-5-phenyl-1,2,4-triazole (TAZ) and 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole (TPBi) are spincoated from ethanol as an orthogonal solvent on top of a P3HT:PCBM active layer. We reduce the dark current at a bias voltage of −1 V by a factor of 17.2 by introducing a TAZ interfacial layer while keeping the responsivity unchanged.  相似文献   
546.
Soluble macromolecules are essential to Nature's control over biomineral formation. Following early studies where macromolecules rich in aspartic and glutamic acid were extracted from nacre, research has focused on the use of negatively charged additives to control calcium carbonate precipitation. It is demonstrated that the positively charged additive poly(allylamine hydrochloride) (PAH) can also cause dramatic changes in calcite morphologies, yielding thin films and fibers of CaCO3 analogous to those produced with poly(aspartic acid) via a so‐called PILP (polymer‐induced liquid precursor) phase. The mechanism by which PAH induces these effects is investigated using a range of techniques including cryo transmission electron microscopy (TEM), Raman microscopy, and thermogravimetric analysis, and the data show that hydrated Ca2+/PAH/CO32? droplets initially form in solution, before coalescing and ultimately crystallizing to give calcite, together with small quantities of vaterite. It is suggested that it is the initial formation of hydrated Ca2+/PAH/CO32? droplets that is key to this process, rather than a specific polymer/mineral interaction. These results are discussed in terms of their relevance to biomineralization processes and highlight the opportunity for using counter‐ion‐induced phase separation of polyelectrolytes as a method for generating minerals with non‐crystallographic morphologies.  相似文献   
547.
The integration of functional oxides on silicon requires the use of complex heterostructures involving oxides of which the structure and properties strongly depend on the strain state and strain‐mediated interface coupling. The experimental observation of strain‐related effects of the individual components remains challenging. Here, a Raman scattering investigation of complex multilayer BaTiO3/LaNiO3/CeO2/YSZ thin‐film structures on silicon is reported. It is shown that the Raman signature of the multilayers differs significantly for three different laser wavelengths (633, 442, and 325 nm). The results demonstrate that Raman scattering at various wavelengths allows both the identification of the individual layers of functional oxide multilayers and monitoring of their strain state. It is shown that all of the layers are strained with respect to the bulk reference samples, and that strain induces a new crystal structure in the embedded LaNiO3. Based on this, it is demonstrated that Raman scattering at various wavelengths offers a well‐adapted, non‐destructive probe for the investigation of strain and structure changes, even in complex thin‐film heterostructures.  相似文献   
548.
549.
Microbial fuel cells for sulfide removal   总被引:3,自引:0,他引:3  
Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to elemental sulfur. Two types of MFCs were used, a square type closed to the air and a tubular type in which the cathode compartment was open to the air. The square-type MFCs demonstrated a potential-dependent conversion of sulfide to sulfur. In the tubular system, up to 514 mg sulfide L(-1) net anodic compartment (NAC) day(-1) (241 mg L(-1) day(-1) total anodic compartment, TAC) was removed. The sulfide oxidation in the anodic compartment resulted in electricity generation with power outputs up to 101 mW L(-1) NAC (47 W m(-3) TAC). Microbial fuel cells were coupled to an anaerobic upflow anaerobic sludge blanket reactor, providing total removals of up to 98% and 46% of the sulfide and acetate, respectively. The MFCs were capable of simultaneously removing sulfate via sulfide. This demonstrates that digester effluents can be polished by a MFC for both residual carbon and sulfur compounds. The recovery of electrons from sulfides implies a recovery of energy otherwise lost in the methane digester.  相似文献   
550.
This research compares the As and Cr chemistry of dislodgeable residues from chromated copper arsenate (CCA)-treated wood collected by two different techniques (directly from the board surface either by rubbing with a soft bristle brush or by rinsing from human hands after contact with CCA-treated wood) and demonstrates that these materials are equivalent in terms of both the chemical form and bonding of As and Cr and in terms of the As leaching behavior. This finding links the extensive chemical characterization and bioavailability testing that has been done previously on the brush-removed residue to a material that is derived from human skin contact with CCA-treated wood. Additionally, this research characterizes the arsenic present in biological fluids (sweat and simulated gastric fluid) following contact with these residues. The data demonstrate that in biological fluids the arsenic is present primarily as free arsenate ions. Arsenic-containing soils were also extracted into human sweat to evaluate the potential for arsenic dissolution from soils at the skin surface. For soils from field sites, only a small fraction of the total arsenic is soluble in sweat. Based on comparisons to reference materials that have been used for in vivo dermal absorption studies, these findings suggest that the actual relative bioavailability via dermal absorption of As from CCA residues and soil may be well below the current default value of 3% used by U.S. EPA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号