首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学工业   1篇
能源动力   2篇
无线电   1篇
一般工业技术   6篇
自动化技术   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
A scanning laser Doppler vibrometer is used to record two-dimensional ultrasound fields in air. The laser light of the vibrometer traverses the sound field to and from a rigid reflector and determines the velocity field, a quantity proportional to the sound pressure rate, in each scanned point relative to the sound source. The object sound is the scattered field from objects outside the recording area. Digital reconstruction by use of phase conjugation (time reversal) of the object sound field is then performed, and the original object field intensity and phase is reconstructed.  相似文献   
12.
The paper presents a general hierarchical formulation applicable to both elliptic and hyperbolic problems. Static and eigenvalue linear elastic problems as well as convection–diffusion problems are studied. The hierarchical formulation is well suited for adaptive procedures. For the convection-diffusion problem the hierarchical approximation is made in time only. Different hierarchical functions are proposed for different types of problems. Both weighted residual and least-squares formulations are applied. A combination of these two gives a penalty method with a constraint equation corresponding to the least-squares method. A whole class of time integration formulae is obtained. These are all suitable for adaptive procedures owing to the hierarchical approximation in the time domain. If a linear discontinuous hierarchical base function is used in the Galerkin weak formulation, the method so obtained corresponds to the discontinuous Galerkin method in time and is especially suited for convection dominated problems. The streamline-diffusion method is found to be the aforementioned penalty method. This paper also examines the sequence of nested equation systems that results from a hierarchical finite element formulation. Properties of these systems arising from static problems are investigated. The paper presents some new possibilities for iterative solution of hierarchic element equations, and different procedures are compared in a numerical example. Finally, a simple ID convection-diffusion problem clearly shows that the proposed hierarchical formulation in time gives a stable and accurate solution even for convection dominated flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号