首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3189篇
  免费   180篇
  国内免费   1篇
电工技术   58篇
综合类   14篇
化学工业   682篇
金属工艺   73篇
机械仪表   63篇
建筑科学   183篇
矿业工程   4篇
能源动力   93篇
轻工业   313篇
水利工程   30篇
石油天然气   22篇
无线电   236篇
一般工业技术   558篇
冶金工业   391篇
原子能技术   22篇
自动化技术   628篇
  2023年   52篇
  2022年   79篇
  2021年   111篇
  2020年   58篇
  2019年   61篇
  2018年   75篇
  2017年   77篇
  2016年   120篇
  2015年   113篇
  2014年   122篇
  2013年   194篇
  2012年   168篇
  2011年   224篇
  2010年   205篇
  2009年   151篇
  2008年   154篇
  2007年   136篇
  2006年   139篇
  2005年   112篇
  2004年   93篇
  2003年   72篇
  2002年   75篇
  2001年   65篇
  2000年   49篇
  1999年   61篇
  1998年   110篇
  1997年   66篇
  1996年   50篇
  1995年   46篇
  1994年   25篇
  1993年   33篇
  1992年   16篇
  1991年   11篇
  1990年   14篇
  1989年   22篇
  1988年   19篇
  1987年   17篇
  1986年   12篇
  1985年   22篇
  1984年   10篇
  1983年   18篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1979年   9篇
  1977年   5篇
  1976年   21篇
  1974年   5篇
  1973年   5篇
  1968年   6篇
排序方式: 共有3370条查询结果,搜索用时 0 毫秒
41.
Permanent magnets based on neodymium-iron-boron (Nd-Fe-B) alloys provide the highest performance and energy density, finding usage in many high-tech applications. Their magnetic performance relies on the intrinsic properties of the hard-magnetic Nd2Fe14B phase combined with control over the microstructure during production. In this study, a novel magnetic hardening mechanism is described in such materials based on a solid-state phase transformation. Using modified Nd-Fe-B alloys of the type Nd16Febal-x-y-zCoxMoyCuzB7 for the first time it is revealed how the microstructural transformation from the metastable Nd2Fe17Bx phase to the hard-magnetic Nd2Fe14B phase can be thermally controlled, leading to an astonishing increase in coercivity from ≈200 kAm−1 to almost 700 kAm−1. Furthermore, after thermally treating a quenched sample of Nd16Fe56Co20Mo2Cu2B7, the presence of Mo leads to the formation of fine FeMo2B2 precipitates, in the range from micrometers down to a few nanometers. These precipitates are responsible for the refinement of the Nd2Fe14B grains and so for the high coercivity. This mechanism can be incorporated into existing manufacturing processes and can prove to be applicable to novel fabrication routes for Nd-Fe-B magnets, such as additive manufacturing.  相似文献   
42.
The interfacial electronic structure between oxide thin films and organic semiconductors remains a key parameter for optimum functionality and performance of next‐generation organic/hybrid electronics. By tailoring defect concentrations in transparent conductive ZnO films, we demonstrate the importance of controlling the electron transfer barrier at the interface with organic acceptor molecules such as C60. A combination of electron spectroscopy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers. Extensive experimental and first principles calculations reveal the controllable formation of hybridized interface states and charge transfer between shallow donor defects in the oxide layer and the molecular adsorbate. Importantly, it is shown that removal of shallow donor intragap states causes a larger barrier for electron injection. Thus, hybrid interface states constitute an important gateway for nearly barrier‐free charge carrier injection. These findings open new avenues to understand and tailor interfaces between organic semiconductors and transparent oxides, of critical importance for novel optoelectronic devices and applications in energy‐conversion and sensor technologies.  相似文献   
43.
We present an integrated fractional-N low-noise frequency synthesizer for satellite applications. By using two integrated VCOs and combining digital and analog tuning techniques, a PLL lock range from 8 to 12 GHz is achieved. Due to a small VCO fine tuning gain and optimized charge pump output biasing, the phase noise is low and almost constant over the tuning range. All 16 sub-bands show a tuning range above 900 MHz each, allowing temperature compensation without sub-band switching. This makes the synthesizer robust against variations of the device parameters with process, supply voltage, temperature and aging. The measured phase noise is ?87 dBc/Hz and ?106 dBc/Hz at 10 kHz and 1 MHz offset, respectively. In integer-N mode, phase noise values down to ?98 dBc/Hz at 10 kHz and ?111 dBc/Hz at 1 MHz offset, respectively, were measured.  相似文献   
44.
45.
The tailoring of organic systems is crucial to further extend the efficiency of charge transfer mechanisms and represents a cornerstone for molecular device technologies. However, this demands control of electrical properties and understanding of the physics behind organic interfaces. Here, a quantitative spatial overview of work function characteristics for phthalocyanine architectures on Au substrates is provided via kelvin probe microscopy. While macroscopic investigations are very informative, the current approach offers a nanoscale spatial rendering of electrical characteristics which is not possible to attain via conventional techniques. Interface dipole is observed due to the formation of charge accumulation layers in thin F16CuPc, F16CoPc, and MnPc films, displaying work functions of 5.7, 6.1, and 5.0 eV, respectively. The imaging and quantification of interface locations with significant surface potential and work function response (<0.33 eV for material thickness <1 nm) show also a dependency on the crystalline state of the organic systems. The work function mapping suggests space‐charge carrier regions of about 4 nm at the organic interface. This reveals rich spatial electric parameters and ambipolar characteristics that may drive electrical performance at device scales, opening a realm of possibilities toward the development of functional organic architectures and its applications.  相似文献   
46.
The solid phase epitaxy (SPE) of undoped amorphous Si (a-Si) deposited on SiO2 patterned Si(001) wafers by reduced pressure chemical vapor deposition (RPCVD) using a H2-Si2H6 gas system was investigated. The SPE was performed by applying in-situ postannealing directly after deposition process. By transmission electron microscopy (TEM) and scanning electron microscopy, we studied the lateral SPE (L-SPE) length on sidewall and mask for various postannealing times, temperatures and a-Si thicknesses. We observed an increase in L-SPE growth for longer postannealing times, temperatures and larger Si thicknesses on mask. TEM defect studies revealed that by SPE crystallized epi-Si exhibits a higher defect density on the mask than at the inside of the mask window. By introducing SiO2-cap on the sample with 180 nm Si thickness following postannealing at 570 °C for 5 h, the crystallization of up to 450 nm epi-Si from a-Si is achieved. We demonstrated the possibility to use this technique for SiGe:C heterojunction bipolar transistor (HBT) base layer stack to crystallize Si-buffer layer to widen the monocrystalline region around the bipolar window and to improve base link resistivity of the HBT.  相似文献   
47.
There is growing interest in understanding how emotion regulation affects adaptation. The present study examined expressive suppression (which involves inhibiting the overt expression of emotion) and how it affects a critical domain of adaptation, social functioning. This investigation focused on the transition to college, a time that presents a variety of emotional and social challenges. Analyses focused on 2 components of suppression: a stable component, representing individual differences expressed both before and after the transition, and a dynamic component, representing variance specific to the new college context. Both components of suppression predicted lower social support, less closeness to others, and lower social satisfaction. These findings were robustly corroborated across weekly experience reports, self-reports, and peer reports and are consistent with a theoretical framework that defines emotion regulation as a dynamic process shaped by both stable person factors and environmental demands. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
48.
49.
Traditional antithrombotic agents commonly share a therapy-limiting side effect, as they increase the overall systemic bleeding risk. A novel approach for targeted antithrombotic therapy is nanoparticles. In other therapeutic fields, nanoparticles have enabled site-specific delivery with low levels of toxicity and side effects. Here, we paired nanotechnology with an established dimeric glycoprotein VI-Fc (GPVI-Fc) and a GPVI-CD39 fusion protein, thereby combining site-specific delivery and new antithrombotic drugs. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles, NP-BSA, NP-GPVI and NP-GPVI-CD39 were characterized through electron microscopy, atomic force measurements and flow cytometry. Light transmission aggregometry enabled analysis of platelet aggregation. Thrombus formation was observed through flow chamber experiments. NP-GPVI and NP-GPVI-CD39 displayed a characteristic surface coating pattern. Fluorescence properties were identical amongst all samples. NP-GPVI and NP-GPVI-CD39 significantly impaired platelet aggregation. Thrombus formation was significantly impaired by NP-GPVI and was particularly impaired by NP-GPVI-CD39. The receptor-coated nanoparticles NP-GPVI and the bifunctional molecule NP-GPVI-CD39 demonstrated significant inhibition of in vitro thrombus formation. Consequently, the nanoparticle-mediated antithrombotic effect of GPVI-Fc, as well as GPVI-CD39, and an additive impact of CD39 was confirmed. In conclusion, NP-GPVI and NP-GPVI-CD39 may serve as a promising foundation for a novel therapeutic approach regarding targeted antithrombotic therapy.  相似文献   
50.
Background: Enzymes of tricarboxylic acid (TCA) have recently been recognized as tumor suppressors. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) cause pheochromocytomas and paragangliomas (PCCs/PGLs) and predispose patients to malignant disease with poor prognosis. Methods: Using the human pheochromocytoma cell line (hPheo1), we knocked down SDHB gene expression using CRISPR-cas9 technology. Results: Microarray gene expression analysis showed that >500 differentially expressed gene targets, about 54%, were upregulated in response to SDHB knock down. Notably, genes involved in glycolysis, hypoxia, cell proliferation, and cell differentiation were up regulated, whereas genes involved in oxidative phosphorylation (OXPHOS) were downregulated. In vitro studies show that hPheo1 proliferation is not affected negatively and the cells that survive by shifting their metabolism to the use of glutamine as an alternative energy source and promote OXPHOS activity. Knock down of SDHB expression results in a significant increase in GLUD1 expression in hPheo1 cells cultured as monolayer or as 3D culture. Analysis of TCGA data confirms the enhancement of GLUD1 in SDHB mutated/low expressed PCCs/PGLs. Conclusions: Our data suggest that the downregulation of SDHB in PCCs/PGLs results in increased GLUD1 expression and may represent a potential biomarker and therapeutic target in SDHB mutated tumors and SDHB loss of activity-dependent diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号