首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44992篇
  免费   15390篇
  国内免费   380篇
电工技术   1039篇
综合类   466篇
化学工业   18290篇
金属工艺   791篇
机械仪表   1291篇
建筑科学   2300篇
矿业工程   268篇
能源动力   999篇
轻工业   7596篇
水利工程   424篇
石油天然气   814篇
武器工业   60篇
无线电   7632篇
一般工业技术   12286篇
冶金工业   1089篇
原子能技术   75篇
自动化技术   5342篇
  2024年   27篇
  2023年   127篇
  2022年   259篇
  2021年   555篇
  2020年   1687篇
  2019年   3363篇
  2018年   3322篇
  2017年   3626篇
  2016年   4092篇
  2015年   4265篇
  2014年   4206篇
  2013年   5405篇
  2012年   3153篇
  2011年   2835篇
  2010年   3072篇
  2009年   2904篇
  2008年   2537篇
  2007年   2320篇
  2006年   2090篇
  2005年   1756篇
  2004年   1572篇
  2003年   1512篇
  2002年   1454篇
  2001年   1292篇
  2000年   1286篇
  1999年   687篇
  1998年   268篇
  1997年   215篇
  1996年   158篇
  1995年   142篇
  1994年   131篇
  1993年   106篇
  1992年   88篇
  1991年   48篇
  1990年   38篇
  1989年   32篇
  1988年   17篇
  1987年   21篇
  1986年   21篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1972年   2篇
  1971年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
992.
Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon‐enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion‐interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high‐throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing.  相似文献   
993.
There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody‐functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two‐stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.  相似文献   
994.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   
995.
Recently, polymer‐coated magnetite (Fe3O4) nanoparticles (NPs) are extensively studied for applications in therapeutics or diagnostics using photothermal effect. Therefore, it is essential to understand the interactions between Fe3O4 NPs and polymers when optical stimuli are applied. Herein, the photonic reactions of Fe3O4 NPs and polymer composites upon application of a 780 nm multiphoton laser are analyzed. The photonic reactions produce unique results including fluorescence from conformationally changed polymer and low‐temperature phase transformation of Fe3O4 NPs. Typically, π‐conjugated chains are formed, inducing fluorescence through a series of main and side‐chain cleavage reactions of polymers with the aliphatic chain. In addition, fluorescence is detected in the cellular system by photonic reactions between Fe3O4 NPs and biomolecules. After multiphoton laser irradiation, light emission is detected near the intracellular Fe3O4 NPs, and a stronger intensity is observed in large‐sized NPs.  相似文献   
996.
Gold‐coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface‐enhanced Raman scattering (SERS), large‐scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface‐guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold‐coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96‐well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high‐performance plasmonic sensing.  相似文献   
997.
Hydrogels have many applications in biomedical surface modification and tissue engineering. However, the structuring of hydrogels after their formation represents still a major challenge, in particular due to their softness. Here, a novel approach is presented that is based on the combination of atomic force microscopy (AFM) and nanofluidics, also referred to as FluidFM technology. Its applicability is demonstrated for supramolecular hydrogel films that are prepared from low‐molecular weight hydrogelators, such as derivates of 1,3,5‐benzene tricarboxamides (BTAs). BTA films can be dissolved selectively by ejecting alkaline solution through the aperture of a hollow AFM‐cantilever connected to a nanofluidic controller. The AFM‐based force control is essential in preventing mechanical destruction of the hydrogels. The resulting “chemical writing” process is studied in detail and the influence of various parameters, such as applied pressure and time, is validated. It is demonstrated that the achievable structuring precision is primarily limited by diffusion and the aperture dimensions. Recently, various additive techniques have been presented to pattern hydrogels. The here‐presented subtractive approach can not only be applied to structure hydrogels from the large class of reversibly formed gels with superior resolution but would also allow for the selective loading of the hydrogels with active substances or nanoparticles.  相似文献   
998.
The surface energy and surface stability of Ag nanocrystals (NCs) are under debate because the measurable values of the surface energy are very inconsistent, and the indices of the observed thermally stable surfaces are apparently in conflict. To clarify this issue, a transmission electron microscope is used to investigate these problems in situ with elaborately designed carbon‐shell‐capsulated Ag NCs. It is demonstrated that the {111} surfaces are still thermally stable at elevated temperatures, and the victory of the formation of {110} surfaces over {111} surfaces on the Ag NCs during sublimation is due to the special crystal geometry. It is found that the Ag NCs behave as quasiliquids during sublimation, and the cubic NCs represent a featured shape evolution, which is codetermined by both the wetting equilibrium at the Ag–C interface and the relaxation of the system surface energy. Small Ag NCs (≈10 nm) no longer maintain the wetting equilibrium observed in larger Ag NCs, and the crystal orientations of ultrafine Ag NCs (≈6 nm) can rotate to achieve further shape relaxation. Using sublimation kinetics, the mean surface energy of Ag NCs at 1073 K is calculated to be 1.1–1.3 J m?2.  相似文献   
999.
As a characteristic trait of most tumor types, metastasis is the major cause of the death of patients. In this study, a photothermal agent based on gold nanorod is coated with metal (Gd3+)‐organic (polyphenol) network to realize combination therapy for metastatic tumors. This nanotheranostic system significantly enhances antitumor therapeutic effects in vitro and in vivo with the combination of photothermal therapy (PTT) and chemotherapy, also can remarkably prevent the invasion and metastasis due to the presence of polyphenol. After the treatment, an 81% decrease in primary tumor volumes and a 58% decrease in lung metastasis are observed. In addition, the good performance in magnetic resonance imaging, computerized tomography, and photothermal imaging of the nanotheranostic system can realize image‐guided therapy. The multifunctional nanotheranostic system will find a great potential in diagnosis and treatment integration in tumor treatments, and broaden the applications of PTT treatment.  相似文献   
1000.
Enhancing the fluorescence intensity of colloidal quantum dots (QDs) in case of color‐conversion type QD light‐emitting devices (LEDs) is very significant due to the large loss of QDs and their quantum yields during fabrication processes, such as patterning and spin‐coating, and can therefore improve cost‐effectiveness. Understanding the enhancement process is crucial for the design of metallic nanostructure substrates for enhancing the fluorescence of colloidal QDs. In this work, improved color conversion of colloidal green and red QDs coupled with aluminum (Al) and silver (Ag) nanodisk (ND) arrays designed by in‐depth systematic finite‐difference time domain simulations of excitation, spontaneous emission, and quantum efficiency enhancement is reported. Calculated results of the overall photoluminescence enhancement factor in the substrate of 500 × 500 µm2 size are 2.37‐fold and 2.82‐fold for Al ND‐green QD and Ag ND‐red QD structures, respectively. Experimental results are in good agreement, showing 2.26‐fold and 2.66‐fold enhancements for Al ND and Ag ND structures. Possible uses of plasmonics in cases such as white LED and total color conversion for possible display applications are discussed. The theoretical treatments and experiments shown in this work are a proof of principle for future studies of plasmonic enhancement of various light‐emitting materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号