首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学工业   10篇
机械仪表   1篇
能源动力   43篇
  2020年   1篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   4篇
  2010年   13篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
排序方式: 共有54条查询结果,搜索用时 140 毫秒
21.
Experimental investigations have been carried out to study the effect of combined wedge ribs and winglet type vortex generators (WVGs) on heat transfer and friction loss behaviors for turbulent airflow through a constant heat flux channel. To create a reverse flow in the channel, two types of wedge (right-triangle) ribs are introduced: wedge ribs pointing downstream and pointing upstream. The arrangements of both rib types placed inside the opposite channel walls are in-line and staggered arrays. To generate longitudinal vortex flows through the tested section, two pairs of the WVGs with the attack angle of 60° are mounted on the test channel entrance. The test channel has an aspect ratio, AR = 10 and height, H = 30 mm with a rib height, e/H = 0.2 and rib pitch, P/H = 1.33. The flow rate in terms of Reynolds numbers is based on the inlet hydraulic diameter of the channel ranging from 5000 to 22,000. The presence of the combined ribs and the WVGs shows the significant increase in heat transfer rate and friction loss over the smooth channel. The Nusselt number and friction factor values obtained from combined the ribs and the WVGs are found to be much higher than those from the ribs/WVGs alone. In conjunction with the WVGs, the in-line wedge pointing downstream provides the highest increase in both the heat transfer rate and the friction factor while the staggered wedge pointing upstream yields the best thermal performance.  相似文献   
22.
A numerical work has been conducted to examine turbulent periodic flow and heat transfer characteristics in a three dimensional square-duct with inline 60° V-shaped discrete thin ribs placed on two opposite heated walls. The isothermal-flux condition is applied only to the upper and lower duct walls while the two sidewalls are insulated, similar to internal passage cooling of gas turbine blades. The computations are based on the finite volume method with the SIMPLE algorithm for handling the pressure–velocity coupling. Air is the working fluid with the flow rate in terms of Reynolds numbers ranging from 10,000 to 25,000. The numerical result is validated with available square-rib measured data and found to agree well with measurement. The computation reveals that the ribbed duct flow is fully developed periodic flow and heat transfer profiles at about x/D = 7–11 downstream of the inlet. Effects of different rib height to duct diameter ratios, BR, on thermal characteristics for a periodic ribbed duct flow are investigated. It is found that a pair of counter-rotating vortices (P-vortex) caused by the rib can induce impingement/attachment flows on the walls leading to greater increase in heat transfer over the test duct. In addition, the rise of BR values leads to the increase in heat transfer and friction loss. The maximum thermal performance is around 1.8 for the rib with BR = 0.0725 where the heat transfer rate is about 4.0 times above the smooth duct at lower Reynolds number.  相似文献   
23.
Experiments have been conducted to investigate the heat transfer and friction factor characteristics of the fully developed turbulent airflow through a uniform heat flux tube fitted with diamond-shaped turbulators in tandem arrangements. In the experiments, strong turbulence and recirculation flow is expected by using tandem diamond-shaped turbulators (D-shape turbulator) connected to each other by a small rod and placed inside the test tube. The parameters for this study are consisted of Reynolds number (Re) from 3500 to 16,500, the included cone angle (θ = 15°, 30° and 45°), and the tail length ratio (TR = lt/lh = 1.0, 1.5 and 2.0) defined as the ratio of the tail length (lt) to the head length of turbulator (lh). The variation of Nusselt number and friction factor with Reynolds number under the effect of those parameters are determined and presented. The experimental result reveals that the heat transfer rate increases with increasing Reynolds number and the included cone angle (θ) but decreases with the rise of the tail length ratio (TR). This is because of the mixing of the fluid in the boundary layer thereby enhancing the convective heat transfer and increasing pressure loss. For the tube with the turbulator of θ = 45°, the heat transfer enhancement is found to be 67%, 57% and 46% for tail length ratio, TR = 1.0, 1.5 and 2.0, respectively. Correlations of the Nusselt number (Nu) and friction factor (f) are developed for the evaluation of interactive effects of using the turbulators on the heat transfer and pressure loss. The good agreement between the experimental and the correlated results is obtained within 5–7% deviation. In addition, the heat transfer enhancement efficiency determined under constant pumping power is also provided.  相似文献   
24.
A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer character-istics in a circular tube with 45° V-baffles with isothermal wal . The computations are based on the finite volume method (FVM), and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000. To generate main longitudinal vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and in-line arrangement on the opposite positions of the circular tube. Effects of tube blockage ratio, flow direction on heat transfer and pressure drop in the tube are studied. It is apparent that a pair of longitudinal twisted vortices (P-vortex) created by a V-baffle can induce impingement on a wal of the inter-baffle cavity and lead a drastic increase in heat trans-fer rate at tube wall. In addition, the larger blockage ratio results in the higher Nusselt number and friction factor values. The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream, respectively. ? 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   
25.
The paper presents an experimental study on the heat transfer and flow friction characteristics in a solar air heater channel fitted with delta-winglet type vortex generators (DWs). The experiments are conducted by varying the airflow rate for Reynolds number in the range of 5000 to 24000 in the test section with a uniform heat-flux applied on the upper channel wall. Firstly, the DW pairs are mounted only at the entrance of the lower wall of the test channel (called DW-E) to create multiple vortex flows at the entry. The effect of two transverse pitches (Re= Pt/H= 1 and 2) at three attack angles (a= 30°, 45° and 60°) of the DW-E with its relative height, b/H= 0.5 (half height of channel) is examined. Secondly, the 30° DWs with three different relative heights (blH = 0.3, 0.4 and 0.5) are placed on the upper wall only (absorber plate, called DW-A) of the test channel. The experimental result reveals that in the first case, the 60° DW-E at Rp = 1 provides the highest heat transfer and friction factor while the 30° DW-E at Rp = 1 performs overall better than the others. In the second case, the 30° DW-A at b/H= 0.5 yields the highest heat transfer and friction factor but the best thermal performance is found at b/H = 0.4.  相似文献   
26.
Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.  相似文献   
27.
An experimental study on drying kinetics of peppercorns has been conducted in two different drying fluidized-bed configurations: rectangular fluidized-bed (RFB) and rectangular fluidized-bed with wavy walls (RFBW). In the RFBW, two opposite triangular wavy walls with three blockage ratios (e/H) are formed to produce vortex/swirl flows leading to stronger turbulence and longer residence time of the flow in the bed. For each bed, three inlet hot airs (Tin) at 60 °C, 80 °C and 100 °C and two superficial air velocity, U* of 1.2 and 2.0 (U* = U/Umf) are introduced. The experimental results reveal that the air temperature and air velocity show significant effects on the drying rate of both beds, especially at Tin = 100 °C and U* = 2.0. The RFBW performs much better than the RFB due to shorter drying time. The average drying time of the RFBW with e/H = 0.3125, 0.3750 and 0.4375 is, respectively, around 29%, 36% and 43% less than that of the RFB. In addition, three mathematical drying models are offered for both the beds and the effect of the air temperature and velocity on the drying model constants was determined by fitting the experimental data using regression analysis techniques. The three models satisfactorily described the drying characteristics of peppercorns especially for the Henderson and Pabis model. The RFBW with e/H = 0.4375 is preferable in the study.  相似文献   
28.
The paper presents an experimental study on turbulent flow and heat transfer characteristics in a square duct fitted diagonally with 30° angle-finned tapes. The tested duct has a square section and uniform heat-fluxed walls and the flow rate of air used as the test fluid is presented in terms of Reynolds number from 4000 to 23,000. The angle-finned straight tape in the present work is newly invented without previous investigations available. The insertion of the finned tape is performed with three ratios of fin pitch to duct height (PR = P/H) at the fin attack angle of 30° with respect to the main flow direction. The finned tape inserted diagonally in the duct is expected to generate a longitudinal vortex flow pair through the heated duct. Influences of five fin-to-duct height ratios (BR = b/H = 0.1–0.3) for each fin pitch on thermal and flow friction characteristics of the inserted duct are investigated. The experimental result shows that at smaller fin pitch spacing, the finned tape with BR = 0.3 provides the highest heat transfer and friction factor but the one with BR = 0.2 and PR = 1.0 yields the best thermal performance. The thermal performance of the newly invented finned tape turbulator is found to be much higher than that of the wire coil/twisted tape turbulator.  相似文献   
29.
The article presents a numerical investigation on laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square-channel fitted with inline 45° V-shaped baffles on two opposite walls. The computations based on the finite volume method with the SIMPLE algorithm have been conducted for the airflow in terms of Reynolds numbers ranging from 200 to 2000. The inline V-baffles with its V-tip pointing downstream and the attack angle (or half V-apex angle) of 45° relative to the flow direction are mounted repeatedly on the lower and upper walls. The baffled channel flow shows a fully developed periodic flow and heat transfer profile for BR = 0.2 at x/D≈ 8 downstream of the inlet. Influences of different baffle height ratios (BR) and pitch ratios, (PR) on thermal behaviors for a fully developed periodic condition are investigated. It is apparent that the longitudinal counter-rotating vortex flows created by the V-baffle can induce impingement/attachment flows over the walls resulting in greater increase in heat transfer over the test channel. Apart from speeding up the fully developed periodic flow pattern, the rise of the BR leads to the increase in Nu/Nu0 and f/f0 values while that of the PR provides an opposite trend. The V-baffle performs better than the angled baffle at a similar condition. The V-baffle with BR = 0.2 and PR = 1.5 yields the maximum thermal performance of about 3.8 whereas the Nu/Nu0 is some 14 times above the smooth channel at higher Re.  相似文献   
30.
Numerical simulations of strongly swirling turbulent flows in a vortex combustor (VC) are conducted. A comprehensive investigation of a three-dimensional isothermal VC flow using three first-order turbulence models: the standard k–ε turbulence model, Renormalized Group (RNG) k–ε model and shear stress transport (SST) k–ω model; and a second-order turbulence model, Reynolds stress model (RSM) together with a second-order numerical differencing scheme is conducted in the present work. The computation indicates that the RSM is superior to the other turbulence models in capturing the swirl flow effect in comparison with measurements. The numerical results for the VC flow provide the characteristics of the flow in terms of relevant parameters for the VC design and operation, composed of axial and tangential velocities, pressure fields, and turbulence kinetic energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号